

Automotive

Defense

Evaluation of joining techniques for continuous fiber reinforced thermoplastic composites

Aerospace

Andrew Lizotte, Fiberforge Corporation David Cramer, Fiberforge Corporation

> 2008 ACCE Conference 16–18 September 2008

Outdoor products

ts Footwear Consumer electronics Medical

Transportation

Sports gear

Composites in motion[™]

Outline

- Fiberforge overview
 - Company
 - Process
- Thermoplastic composite joining
 - Joining Method Evaluation
 - Application Review

Composites in motion[™]

Fiberforge[®] is a private technology company whose specialty is thermoplastic advanced composite production technology.

Fiberforge's Relay™ Station — A patented, automated process that enables cost-effective production of thermoplastic advanced composites in high-performance applications.

Complete product offering from research to production to technology transfer.

Diverse customer base includes world leading companies in aerospace, automotive, consumer electronics, sporting goods, medical, and military markets.

0

0

0 0

Why Thermoplastics?

Superior Properties & Performance

- Excellent toughness
- High energy absorption
- Recyclable

FIBERFORG

- Low VOC emissions
- Infinite shelf life
- Low cost
- Excellent flame, smoke, and toxicity performance

Cost Efficient Fabrication

- High speed automated lay-up
- Rapid processing for high volumes
- Press moldable / stampable
- Reformable
- •Weldable
- Can be overmolded

0

00000

0 0

0 0

0

0

Fiberforge process overview

Unidirectional Tape

Tailored Blank made by Relay Station

.ulllh.

Thermoformed 3D Part

Consolidate Tailored Blank into Solid Laminate

Composites in motion[™]

Fiberforge Relay Station

Relay[™] Station: A patented process for manufacturing a 2D, near net shape preform called a Tailored[™] Blank

Composites in motion[™]

Tailored Blanks

What is a Tailored Blank?

- Flat, multi-ply laminate made from multiple layers of fiber and resin tape.
- Precise fiber orientation in each ply; variable thickness throughout ply if needed.
- Fiber orientation is tailored to part-specific loading.
- Multiple fiber types and volume fractions possible within part.
- Part shape tailored to part geometry.
- Issued Patents #6,607,626, 6,939,423, 1155466C (China), other patents pending

0

0

0000

0

Lower Scrap • Faster Production Less Labor • Lower Cost

Tailored Blanks: Optimal Material Usage and Part Performance

Thermoforming

- Load blank into shuttle system
- Heat in infrared oven
- Shuttle into press
- Close press to form and "freeze" part

Void Content with FF Process

- The quality and performance of thermoplastic composites is determined by void content
- Void content is minimized by the optimization of process parameters
- Fiberforge aims to have approximately<2% void content after forming

Joining of Thermoplastic Parts Method Evaluation

Joining options for thermoplastic composites

Composites in motion

Joint design considerations

- Materials being joined
- Load requirements (shear, peel, fatigue, etc.)
- Bond length
- Number of bonds per part
- Bond strength to meet weight and load requirements
- Environmental resistance (fuel, salt water, service temperature, etc.)
- Bond verification: NDI/proof testing
- Compatibility with part geometry

Composites in motion[™]

Joining method evaluation matrix										
	Load requirements	Fatigue	Bond length	Reliability	Environ. resistance	NDI compatible	Compatible with part geometry	Compatible with materials	Weight	Similar Applications
Adhesives										
Mechanical fasteners	-				-	-				
Thermal										
Vibration										
Ultrasonic										
Resistance										
Induction, no susceptor										
Induction w/susceptor										
+ = positive - = neg				gative = TBD)					

Material: AS4 carbon fiber/PEEK, 59% Vf

Composites in motion[™] Overview of Joining Methods

	Load requirements	Fatigue	Bond length	Reliability	Environ. resistance	NDI compatible	Compatible with part geometry	Compatible with materials	Weight	Similar Applications
Adhesives	-	-	+	+	-	0	+	+	0	-
Mechanical fasteners	_	. <u> </u>	+	+	0	+			_	_
Thermal			+	0	+		0	0	+	-
Vibration	+	+	+	0	+		—		+	
Ultrasonic	_		_	—	+		—		+	
Resistance	+		+		0		+	+	0	+
Induction, no susceptor	+		+	+	+		+	+	+	+
Induction w/susceptor	+		+	+	0		+		0	+
	+ = positive 0 = neutral		- = negative blank = TBD)					

Resistance and Induction Welding

- Resistance Welding
 - Uses an electrically resistive implant sandwiched between the bonding surfaces of the laminates. This provides the necessary heat to the joint.
 - Simple method with simple tooling and little surface treatment required
- Induction Welding
 - A coil is used to generate an alternating magnetic field that induces eddy currents in the joint material.
 - Heat is then produced due to the resistance properties of the material.

Development approach

Induction welding

 Collaboration with University of Delaware Center for Composite Materials, Dr. Shridhar Yarlagadda and Dr. John Gillespie

Resistance welding

 Development performed internally within Fiberforge

Resistance Welding Trials

- HP 6268 DC Power Supply
 - Maximum output of 40V and 30A
 - Analog display
 - Self-cooling
- Lap shear specimen construction
 - CF-PEEK laminates
 - PEEK film 0.12 mm
 - Stainless Steel mesh, 400 x 400
 - 100 mm and 280 mm wide panels fabricated and cut into 25 mm test specimens

Composites in motion[™]

Coupon welding

- Lap shear specimen is sandwiched between two steel caul sheets and covered by insulating blocks
- Clamps used to apply 0.6 MPa pressure on the weld
- Two cool streams of air were directed at the edges of the weld in order to cool the mesh and extend the processing window

Coupon welding results

	Peak Force	Stress
Specimen 1	8.6kN	17.0MP a
Specimen 2	13.3kN	28.9MPa
Specimen 3	12.3kN	30.6MP a
Specimen 4	10.9kN	24.3MPa

Overheating of the edges of the weld where the mesh was exposed to air caused degradation of the material. Degraded carbon/PEEK composites became more brittle and thus broke at lower forces.

Composites in motion[™]

Weld failure

- Adhesive failure occurred on the edges
- Cohesive failure occurred in the middle specimens

Lap Shear Preliminary Test Results

	Adhesive	Induction	Resistance
	bonding	Welding	Welding
	baseline	(UD)	(FF)
Lap Shear Strength –	17	26.7	27.7
MPa (psi)	(2,465)	(3,872)	(4,017)
Standard Deviation	2.3	6.4	7.4

Composites in motion

FIBERFORG

- Framework established for evaluating joining methods
- Two fusion bonding methods evaluated and preliminary lap shear testing performed
- Induction welding and resistance welding showing similar lap shear strengths, both greater than adhesive results
- During process optimization, strengths expected to increase
- Next steps include optimization and scale up to create full-size panel

Composites in motion[™]

Thank You

Acknowledgements University of Delaware

Dr. Shridhar Yarlagadda Dr. John Gillespie

Fiberforge

Dan Kaliberov Brett Guglielmo Andrew Burkhart

Contact Information

Fiberforge Corporation 3768 Highway 82, Ste 204 Glenwood Springs, CO 81601 info@fiberforge.com +1 (970) 945-9377

