

State-of-the-Art Fastening Technology in Thermoplastics and Thermosets

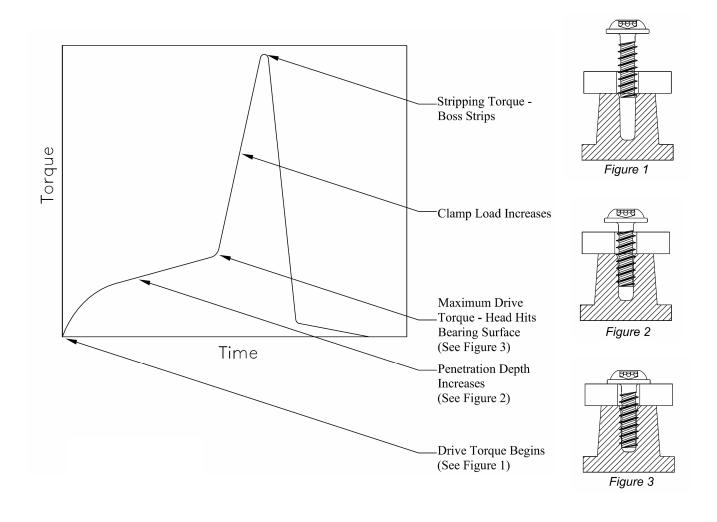
Presented by: Joe Gobernatz

Threadforming Program Manager – ATF, Inc.

Agenda

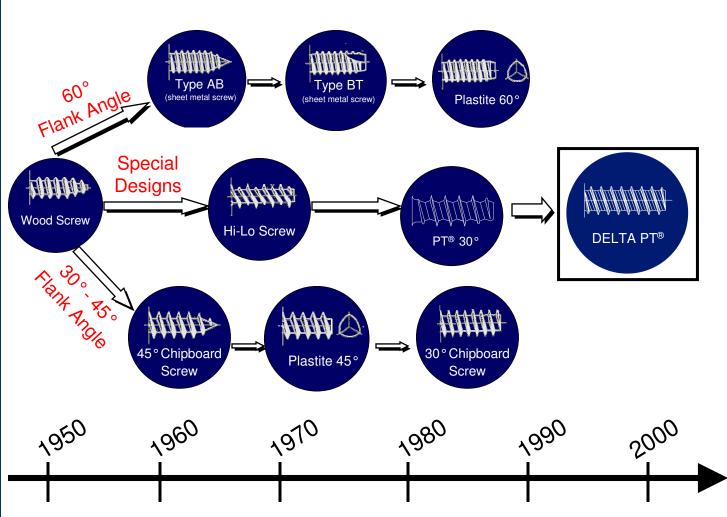
- Technical Overview and History of Fastening into Plastics
- DELTA PT[®] Design Features and Benefits
- Boss Design Guidelines for Plastic Components
- Case Studies
 - Metal Replacement
 - Thermal Conductive Plastics
- Performance Advantages of DELTA PT[®] vs Traditional Threadformers for Plastics
- ATF Applications Laboratory Services

Plastic Joint Design Considerations



- Low radial stress
- Joint stability
- High mechanical strength
- Vibration resistance
- Serviceability
- High strip-to drive ratio

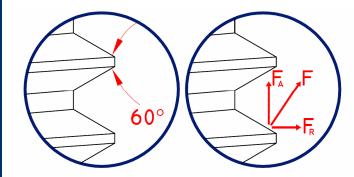
Drive and Strip Torque Explanation



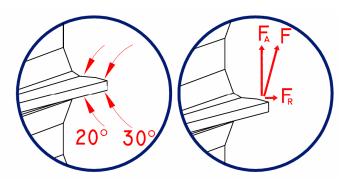
Evolution of Thread-Forming Fasteners

DELTA PT® Features

- Innovative flank geometry
- Reinforced cored root
- Large minor diameter
- Refined helix angle
- Optimized head geometry


Reduced Radial Stress

Innovative Flank Geometry

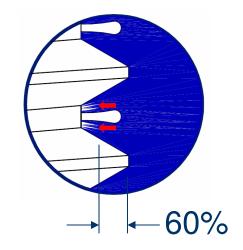

- allows reduced wall thickness (2xD)
- reduces sink marks
- permits shorter molding cycle times
- leads to significant material savings

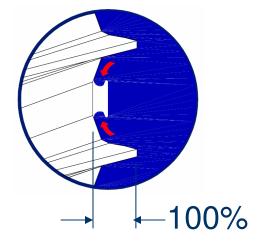
Other Thread-Formers

$$F_{R} = 0.50F$$

DELTA PT®

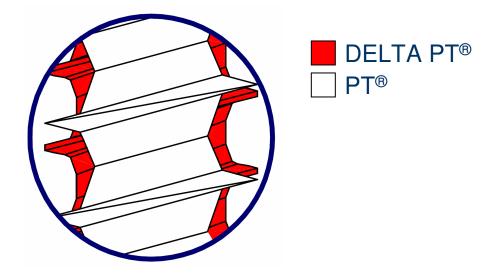
 $F_{R} = 0.26F$


Increased Joint Stability


Reinforced cored root

- prevents material jam
- eliminates cracking due to stress concentrations
- provides nearly 100% flank engagement

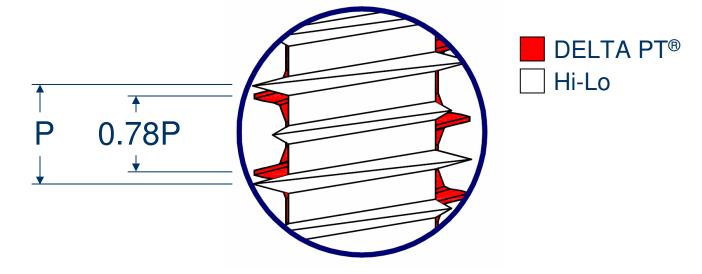
Other Thread-Formers



High Mechanical Strength

Large Minor Diameter

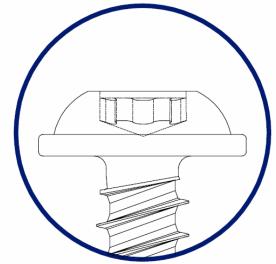
- increases torsional and tensile strength
- allows fastener to withstand the high torque requirements presented by thermoset and highly glass filled thermoplastic materials



Superior Vibration Resistance

Refined helix angle (pitch)

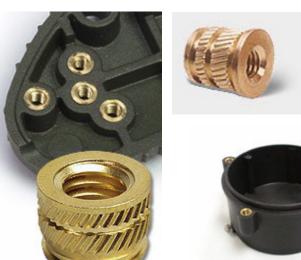
- increases number of engaged threads by almost 30% compared to other thread formers at same penetration depth
- leads to a joint with high dynamic safety



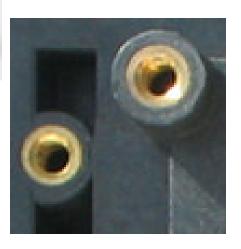
Excellent Serviceability

Optimized Head Geometry

- large bearing surface distribute pressure over large area to reduce creep and increase break-loose torque
- deep drive recess penetration eliminates possibility of recess stripping and allows for multiple installations and better in-line torque transfer



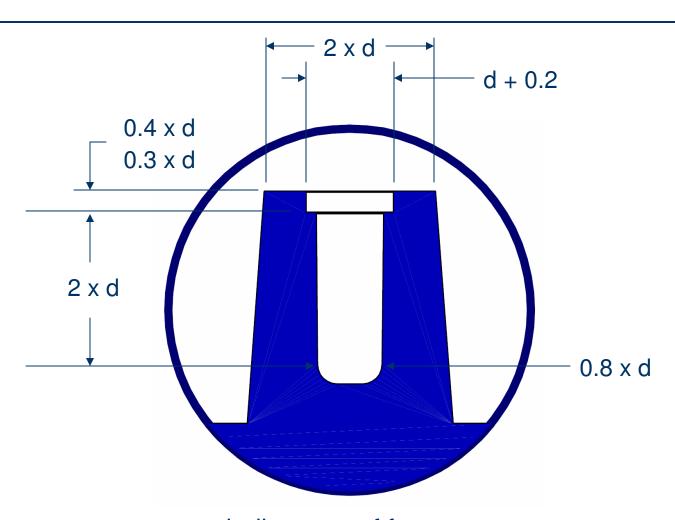
Eliminate Costly Brass Inserts



Improve Quality and Reduced Cost by using DELTA PT®

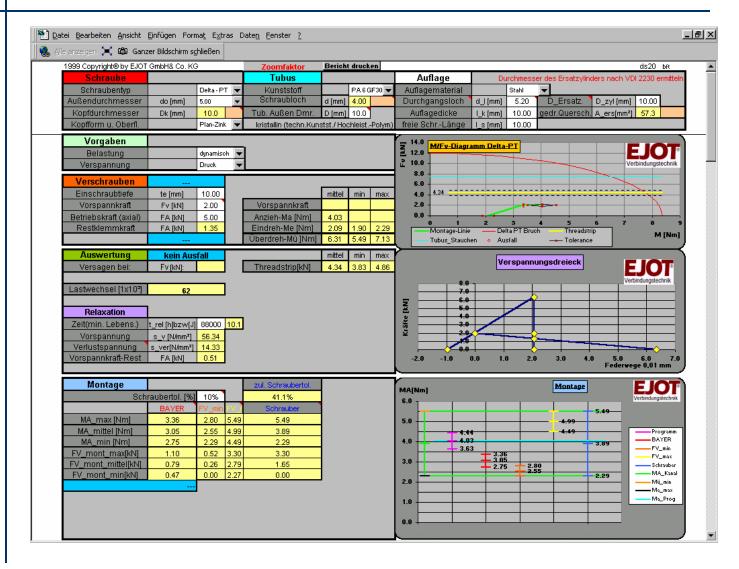
- Plastic cracking, Partially seated
- Plastic flows over the top of the insert
- Plastic fills threaded bore of the insert
- Eliminate chasing inserts with a tap after molding
- Reduce mold cycle times
- Eliminate inserts not molded flush
- Excess sorting costs to guarantee molded correctly
- Increasing brass costs (200% increase in 2007)
- Improved joint quality and performance

Boss Design


Counterbore:

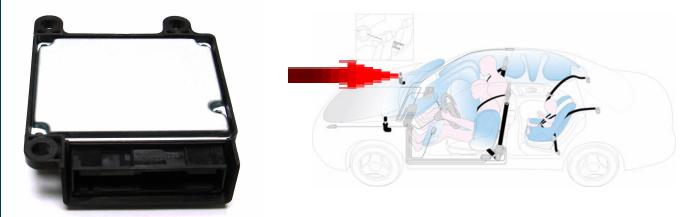
- ensures favorable edge stress reduction and prevents cracking
- acts as a guide during installation
- Deviations from 0.8 x d hole recommendation may occur due to:
 - local textures caused by additives and filling
 - processing conditions of the material
 - design of the injection molding tool
 - distance to the injection point
 - formation of weld lines
 - variations in application components

Boss Design



d: diameter of fastener 1° max draft angle recommended

DELTA Calc



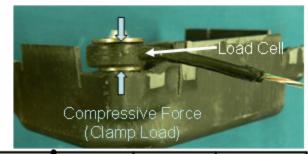
Case Study #1: Metal Replacement



- Safety critical redundant system, clamp load retention is critical.
- From AI, to Mg to Thermoset!!!
- Thermoset has similar properties to Al for a fraction of the cost and weight.

Case Study #1: Metal Replacement

Fastener: DELTA PT® 30 x 1.12 x 9 Torx Plus® Pan Head

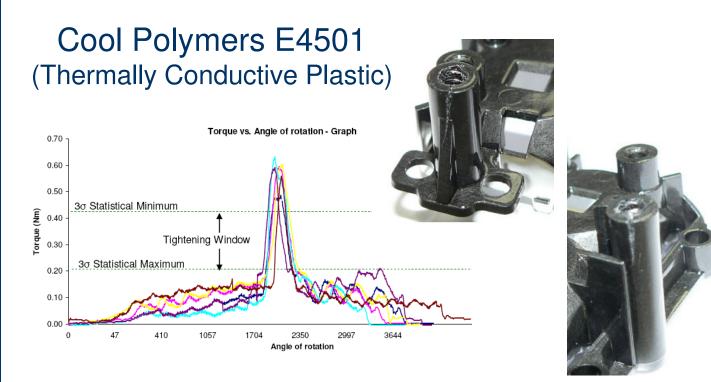

Application: Circuit Board Housing

Material: BMC 605 Average Hole Diameter: 2.67 mm

Average Thread Engagement: 6.6 mm

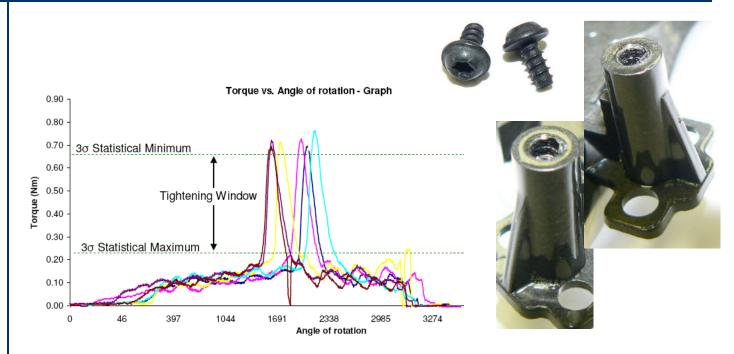
Testing Conditions:

Six 4-hr cycles of temperature variation from -20°C to 80°C



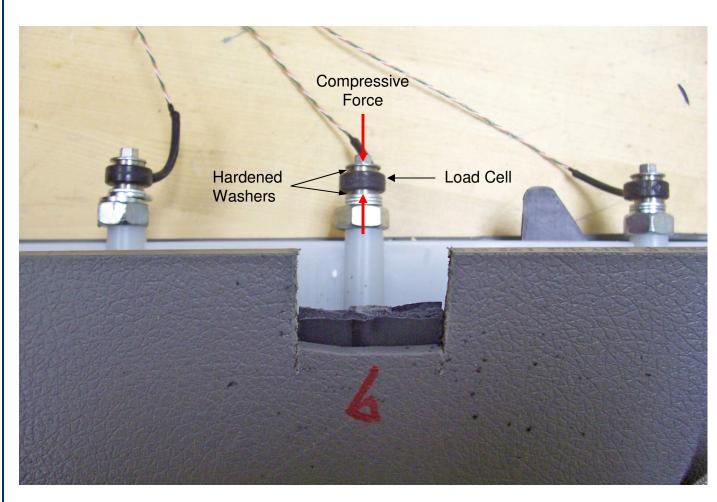
Fastener	Initial Clamp Load (bs)	Final Clamp Load (lbs)	% Retention of Clamp Load	Installation Torque in-Ibs (Nm)	Break-loose Torque in-lbs (Nm)	% Difference
DELTA PT® 30 x 1.12 x 9 Torx Plus® Pan Head	61.12	49.88	81.60%	3.36(0.38)	1.68(0.19)	50.00%
	73.39	56.50	77.99%	3.63(0.41)	1.95(0.22)	53.66%
	65.71	58.20	88.57%	3.54(0.40)	1.68(0.19)	47.50%
	69.26	53.75	77.61%	3.45(0.39)	1.86(0.21)	53.85%
Average:	67.37	54.58	81.44%	3.5 0(0.40)	1.79(0.20)	51.25%
Standard Deviation:	5.22	3.63	5.08%	0.12(0.01)	0.13(0.01)	3.07%

Case Study #2: Thermal Conductive Plastics



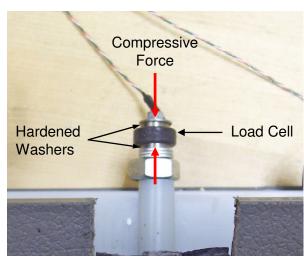
- Due to the brittle nature of the plastic, boss cracking is a serious issue.
- In the current design the strip to drive ratio was 2.15.
- Due to the boss cracking and low strip to drive ratio, the customer planned on abandoning the use of this plastic type.

Case Study #2: Thermal Conductive Plastics



- By understanding the performance values of DELTA PT, low radial stress coupled with knowledge of the application ATF was able to design the proper boss
- Strip to Drive ratio of 3.05.
- ATF was also able to develop a boss design to commonize all 7 fasteners.

Clamp Load Testing Capabilities



DELTA PT® vs AB and HiLo Screws Clamp Load

Testing Setup

Boss Material: PC/ABS

Testing Conditions Requested: 8 hour thermal variation from 60 °C to -20 °C

Installation Torque: 1.32 Nm

	DELTA PT® 40	M4.2 AB Screw	M4.2 HiLo Screw
Initial Clamp Load (lbs)	346.19	151.83	119.47
Final Clamp Load (lbs)	221.55	20.46	44.61
Percent Retention of Clamp Load	64%	13%	37%

Clamp Load Retention Test Results

Fastener	Average Tightening Torque	Average Break-Loose Torque	Average Initial Clamp Load	Average Final Clamp Load	Percent Retention of Clamp Load
DELTA PT® 40	5.13 in-lbs (0.58 Nm)	4.25 in-lbs (0.48 Nm)	128 lbs (570 N)	88 lbs (391 N)	69%
M4.2 Hi-Lo	9.73 in-lbs (1.10 Nm)	2.12 in-lbs (0.24 Nm)	78 lbs (348 N)	35 lbs (156 N)	45%

Average Thread Engagement

DELTA PT® 40 : 11.5 mm M4.2 Hi-Lo: 13.8 mm

Testing Conditions

Eight hour thermal variation from 60°C to -20°C

Applications

- Air Bag Modules
- Trunk and Door Latches
- Door Panels
- Power Window Motors
- Tail Lamps
- Fuel Rails
- Air Flow Sensors
- Cooling Fans
- Seatbelt Housings
- Instrument Panels
- Battery Housings

Applications Laboratory Services

- Fastener Design Recommendations
- Boss Design Recommendations
- Drive and Strip Torque Testing
- Clamp Load Testing
- Environmental Testing
- Tensile Testing
- Serviceability Testing

DELTA PT® Summary

Innovative Flank Geometry

Reduced radial stress

Reinforced Cored Root

Increased joint stability

Refined Helix Angle

Vibration resistance

Large Minor Diameter

High mechanical strength

Optimized Head Geometry

Excellent serviceability

A Superior Thread-former for Plastics