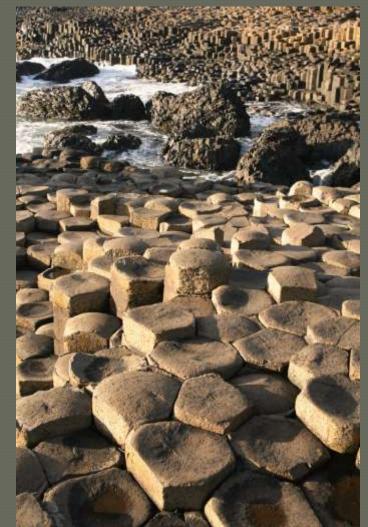


ALLIED COMPOSITE TECHNOLOGIES LLC

Basalt Fibers For High-Performance Composites

Allan D. Murray

ALLIED COMPOSITE TECHNOLOGIES ILC


Outline

Basalt Introduction
Manufacturing Basalt Fibers
Key Properties
Application Examples
Summary

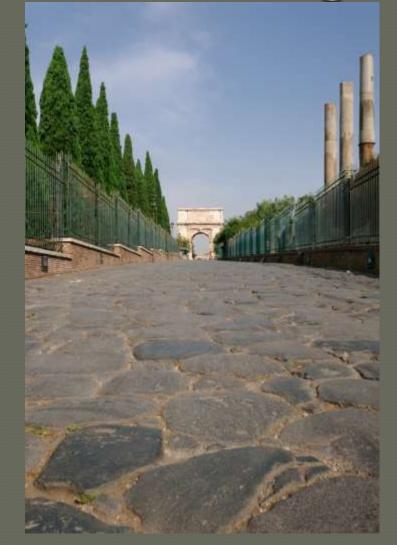
Rock from frozen lava

What is Basalt?

Typical Basalt Rock

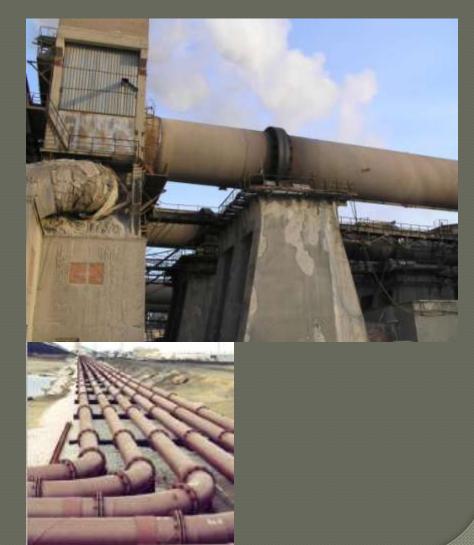
Basalt is 1/3 of Earth's Crust

Maconsie


 Plentiful in Michigan's Upper Peninsula
 9-mile thick deposit in Keweenaw Peninsula

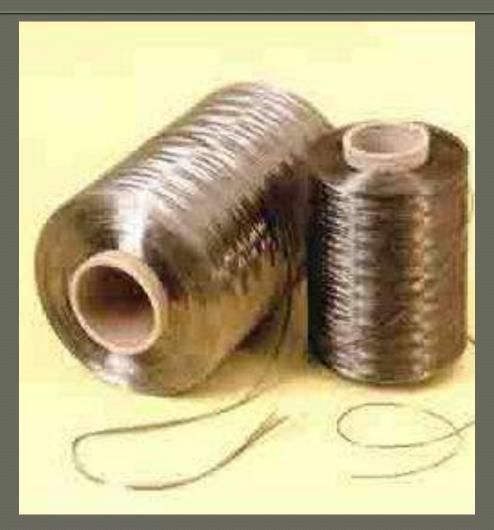
 Basalt was readily available in Rome
 Mt. Vesuvius
 Romans recognized its strength and durability

- Used in road construction
- Some still in use


Basalt Strength

Basalt Chemical Resistance

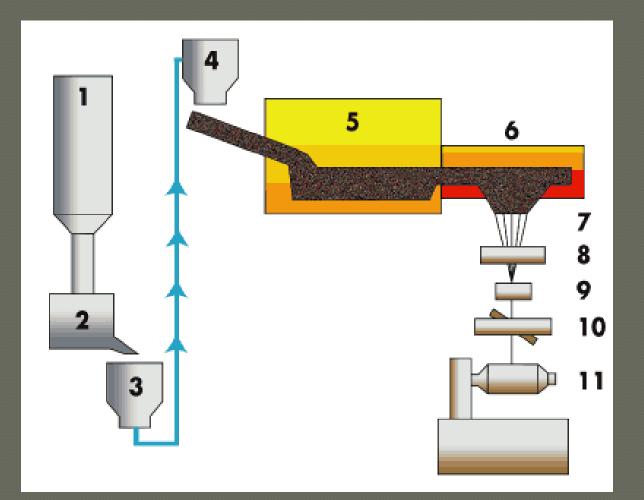
 Basalt rock melted and cast into chemical and abrasion resistant pipe liners


 e.g. used in cement slag handling

Fibers from Basalt

 Early fiber manufacturing efforts in US prior to WW2 Main development effort by Soviets for defense and aerospace applications No Soviet effort to commercialize Research declassified in 1990's Recent efforts to lower cost and commercialize

Continuous Fibers from Basalt



Fiber Forming Process

Similar to E-glass forming except:

- Only one material, crushed rock
 - No 'flux' like boric oxide added for processing
- Higher melting temperature:
 - 1400 C+ vs. 1200 C
- Harder to process, but better properties

Basalt Furnace

Fiber Forming Process

The right chemical make-up is essential
 Temperature and process control critical

Basalt Compared to E-glass

Compound	w% in E-glass	w% in basalt	
SiO ₂	52-56	51.6-57.5	
Al2O3	12-16	16.9-18.2	
CaO	16-25	5.2-7.8	
MgO	0-5	1.3-3.7	
B 2 O 3	5-10		
Na ₂ O	0.8	2.5-6.4	
K2O	0.2-0.8	0.8-4.5	
Fe ₂ O ₃	≤0.3	4.0-9.5	

Basalt Chemistry Required for Fiber Production

• High silica and alumina content required to provide glass network Melt strength must be high and melt viscosity within acceptable range Other 'impurities' help keep mix from crystallizing Need to obtain an amorphous glass fiber with small or no crystallites

Fiber Process Conditions

- In addition to chemistry, the process conditions are critical
- Melt temperature
- Melt Temperature uniformity
 - Avoid precipitation in melt
- Fiber draw rate and temperature
 - Avoid crystallization during draw

Basalt Sources for Fiber Production

Large variation in basalts around world

- Chemical make-up of the lava source
- Temperature history and rate of cooling of lava
 - Slow cooling results in segregation and precipitation
 - Weathering and oxidation over time
- Chemical characteristics and uniformity of basalt quarry are essential for good fibers

Cost of Fiber Production

• Main cost elements:

- Raw material is inexpensive and readily available
- Energy required to melt higher than E-glass, similar to S2-glass
- High platinum-alloy bushing investment

 Low productivity during learning
 Thus basalt cost somewhere between Eglass and S-glass but should come down

Fiber Production Sources

Current sources mainly Eastern Europe

- Where technology emerged
- Russia, Ukraine, also now Shanghai, China
 Plans for more production have been announced

 But these plans haven't all materialized
 Manufacturing should be close to suitable basalt quarries and inexpensive energy

Key Properties of Basalt Fibers

• Thermal Resistance

- 250 to 300 degrees C better than E-Glass
- Similar to S2-Glass

Key Properties of Basalt Fibers

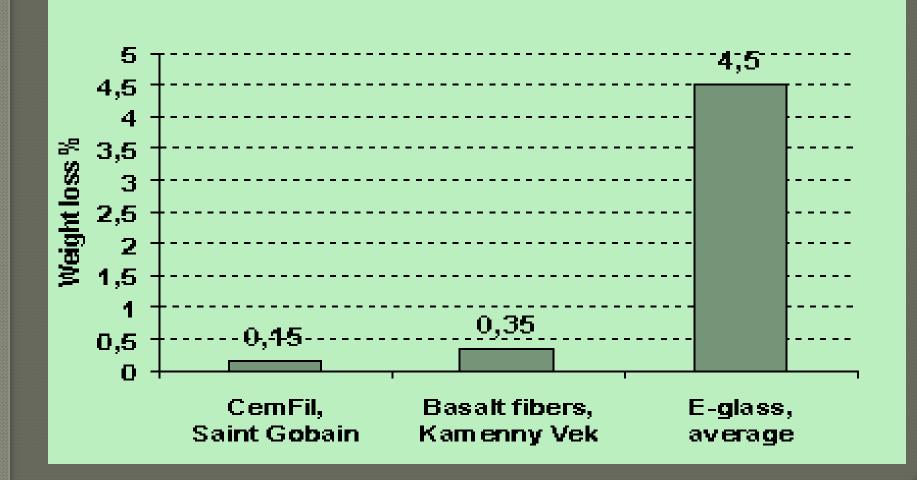
Thermal Resistance Mechanical Strength

- Higher stiffness and strength than E-Glass
- Slightly higher specific gravity

Basalt Fiber vs. other Fiber Materials

	Basalt	E-glass	S2-glass	Aramid	Carbon fiber
Tensile strength, MPa	3000~4840	3100~3800	4020~4650	2900~3450	3500~4400
Elastic modulus, GPa	93~110	72.5~75.5	83~86	70~179	230~800
Elongation at break, %	3.1~6	4.7	5.3	2.4~3.6	0.5~1.5
Specific gravity	2.65~2.8	2.5~2.62	2.46	1.44	1.75~1.95
Max. Temp. of application, °C	~650	~380	~500	~250	~400
Melting temp, °C	1450	1120	1550	NM	NM

Key Properties of Basalt Fibers


Thermal Resistance
Mechanical Strength
Chemical Resistance

- Good alkaline resistance
- Also acid and salt resistance

Basalt Fiber vs. other Fiber Materials

	Basalt	E-glass	S2-glass	Aramid	Carbon fiber		
Tensile strength, MPa	3000~4840	3100~3800	4020~4650	2900~3450	3500~4400		
Elastic modulus, GPa	93~110	72.5~75.5	83~86	70~179	230~800		
Elongation at break, %	3.1~6	4.7	5.3	2.4~3.6	0.5~1.5		
Specific gravity	2.65~2.8	2.5~2.62	2.46	1.44	1.75~1.95		
Max. Temp. of application, °C	~650	~380	~500	~250	~400		
Melting temp, °C	1450	1120	1550	NM	NM		
% wt. loss after 3 hrs. boiling in:							
H ₂ O	0.2	0.7	0.05				
2N NaOH	5	6	5				
2N HCI	2.2	38.9	15.7				

Weight loss after 3 hours boiling in saturated cement solution

Key Properties of Basalt Fibers

- Thermal Resistance
 Mechanical Strength
 Chemical Resistance
 Ecological Friendliness
 - Natural and abundant raw material
 - No biological hazard
 - 'Incinerator friendly'
 - Incineration temperatures around 1100 C
 - E-glass softens and can clog incinerator

Basalt Fiber Application Examples

Reinforcement of Concrete

Reinforcement of Concrete

- Resistance to alkaline concrete, acids, salt, and water exposure
 - Can even put uncoated chopped fiber in concrete for crack resistance

Problems with steel and glass-rebar
Strength comparable to steel
Light weight and flexibility makes installation easier

Basalt Fiber Concrete Rebar

Rebar in Concrete

Basalt Fiber Application Examples

Reinforcement of Concrete
Conveyor Rollers

Basalt-fiber Pultruded Conveyor Rollers

Conveyor Rollers

Replacing coated steel roller bearings that support heavy coal conveyor belts
Chemical and abrasion resistance
Dramatically reduced weight saves energy required to operate conveyor
Apparently a very short payback period in some applications

Basalt Fiber Application Examples

Reinforcement of Concrete
 Conveyor Rollers
 Ballistic Protection

Basalt Composite Ballistic Protection Panels

- Basalt-reinforced composites being evaluated to replace plate steel armor
 - High strength and light weight
 - High-temperature resistance provides performance where E-glass and other fibers fail
 - An early Soviet army application for basalt fiber

Basalt Fiber Ballistic Protection

Basalt Fiber Application Examples

Reinforcement of Concrete
Conveyor Rollers
Ballistic Protection
Brake Pads

Basalt Fibers in Brake Pads

- Effective replacement for asbestos in brake pads
 High temperature resistance
- Stable high friction coefficient
- Relatively low wear of steel disk or drum compared to ceramic

Basalt Fiber Application Examples

Reinforcement of Concrete
Conveyor Rollers
Ballistic Protection
Brake Pads
High-Pressure Pipe

Basalt Reinforced High-Pressure Pipe

- Basalt-fiber wrapped plastic pipes to replace metal pipes
- High strength
- Resistance to high-temperature, moisture, various chemicals
- Sewage, chemical transport, etc.
- Flexibility and easier installation benefits

Basalt Fiber High-Pressure Pipe

Basalt Fiber Application Examples

- Reinforcement of Concrete
 Conveyor Rollers
- Ballistic Protection
- Brake Pads
- High-Pressure Pipe
- Automotive Headliners

Basalt Fiber Automotive Headliners

2007 Honda Fiberglass-free Headliner

Basalt Fiber Automotive Headliners

- Azdel VolcaLiteTM uses basalt fiber to replace E-glass for auto headliners
 Sound absorption and strength/weight reduction benefits claimed
 Primary driver is 'incineratorfriendliness'
 - Incineration temperatures around 1100 C
 - E-glass softens and can clog incinerator

ALLIED COMPOSITE TECHNOLOGIES LLC

Summary

 Basalt fibers have excellent set of properties

Thermal, mechanical, chemical, environmental
Cost likely between E-glass and S-glass
Basalt should be of interest in many specialty composite applications