

SOCIETY OF PLASTICS ENGINEERS AUTOMOTIVE & COMPOSITES DIVISIONS

Reaction Injection Moldable Polydicyclopentadiene (pDCPD) for the Heavy Truck Market

Garland Lee Metton America

SOCIETY OF PLASTICS ENGINEERS AUTOMOTIVE & COMPOSITES DIVISIONS

PolyDCPD RIM Molding Evolution:

Introduction

- Heavy Truck Applications
- Construction/Agriculture Applications
- Industrial Applications

Introduction to

REACTION INJECTION MOLDING

•Viscosity Close to Water @ 300 centipoise
•Inject Parts up to 13 m² or > 100 kg
•Cavity Pressure of 15 to 30 psi (Design Mold to Maximum 50 psi)

LOW PRESSURE PROCESS with LOW VISCOSITY LIQUIDS

TOOLING OPTIONS:

•Differential Core & Cavity Temperature for Optimum Surface Quality •Core @ 60 C and Cavity @ 80 C

•Class A Parts: Nickel Shell or Machined Aluminum

•Industrial Parts: Cast Aluminum is an Option

•Prototypes: Composite Molds, Machined Pattern Material, Plaster, etc.

LOW PRESSURE MOLDS & MANY PROTOTYPE OPTIONS

MECHANICAL PROPERTY COMPARISON:

PROPERTY U.S. Units (SI Units)	ASTM METHOD	METTON 1539	ABS	FRP	SMC
Density, g/cc	D792	1.03	1.05	1.43	1.84
(lb/in ³)		(0.037)	(0.038)	(0.0518)	(0.0667)
Tensile Strength @ yield, Ksi	D638	6.8	4.3	10.5	4.7
(MPa)		(46.8)	(29.6)	(72.3)	(32.34)
Tensile Modulus, Ksi	D638	275	276	1,170	1,433
(GPa)		(1.90)	(1.90)	(8.08)	(9.90)
Flexural Strength @ 5% strain, Ksi	D790	10.1	7.5	13.3	11.9
(MPa)		(70)	(52)	(92)	(82)
Flexural Modulus, Ksi	D790	273	276	882	987
(GPa)		(1.88)	(1.82)	(6.07)	(6.79)
Yield Strain, %	D638	4.7	2.0	1.3	0.6 ⁽³⁾
Plate Impact, (ft-lbs) ⁽¹⁾	-	34.1	6.6	15.9	4.6
@ Design Thickness, inches (mm)		.220 (5.6)	.125 (3.2) ⁽²⁾	.215 (5.5)	.110 (2.8)
Notched Izod Impact @ 23° C ft-lb/in., (J/m) @ 0° C @ -20° C @ -40° C	D256	8.7 (460) 6.0 (317) 2.5 (132) 2.0 (106)	- - - -	- - -	- - -
DTUL @ 264 psi., °F (°C)	D648	248 (120)	-	-	-

Notes: Mechanical properties are based on most conservative values either long term aged or freshly molded. Competitive materials were cut from production parts.

(1) 2 " diameter top: 8,000 inches per minute, 3.5" clamp ring; (2) ABS part was a chassis side fairing versus others which were hoods; (3) Strain to failure.

BALANCED MECHANICAL PROPERTIES with EXCELLENT IMPACT

RIM Molding Process:

- •Standard RIM Injection Unit: Lance or Pump
- •High Pressure Impingement Mixhead (70-140 bar)
- Inject in 5 to 20 Seconds with Part Fully Cured in 60 Seconds
- •Normally No Mold Release & No Post Cure
- •Trimming with Hand Tool or Flush Trim Router Bit
- •Multi-Cavity Molds Do Not Need Balanced Cavities

LARGE PART MOLDING with 4 to 6 Min. Cycle Time

Bonding:

Bonded Reinforcements Optimize Part Stiffness
P-DCPD is a Friendly Substrate for Adhesives
Typical Adhesives are Urethane, Epoxy & Methacrylate

Structural Adhesives Create Large Durable Fabrications

Painting:

Surface Oxidation is Required After Molding

 Chlorinated Detergent Prewash or 24 Hours Natural Oxidation
 TPO Primers and Part Sanding are also Options

 P-DCPD is a Friendly Substrate for Paints

 Two Component Urethanes are Most Common
 Paint Bake Temperatures <100° C

Paint Adhesion is Excellent & Class A is Achievable

Heavy Truck Applications:

•First Commercial Applications in 1996

•Hoods, Fenders, Chassis Side Fairings, Roof Fairings, Bumpers, Side Extenders & Sunvisors are In Production

Large Part Capability, No Fiberglass, Design Freedom & Consistent Part Size
Excellent Damage Tolerance, Reduced Warranties & Low Temp Impact

Large & Durable Class A Parts with Excellent Paint Adhesion

Construction & Agricultural Equipment:

•First Commercial Applications in 1988

•Hoods, Fenders & Load Floors are In Production

•Metal Replacement Requires Design Freedom for Part Reduction & 3-D Styling Options

•Excellent Damage Tolerance, No Rust or Dents and Outstanding Surface Finish

Large Part Design Freedom & Excellent Damage Tolerance

Industrial Applications:

Railroad Chocks in 1988 & Automotive Engine Pods in 1990
Design Freedom with Tight Tolerance, Integrated Functionality, Large Parts with THICK-TO-THIN Transitions & Excellent Chemical Resistance
Tough & Durable Performance for High Abuse & Long-Term Performance

Thickness to 30 cm, Toughness & Durability for Large & Thick Parts

SOCIETY OF PLASTICS ENGINEERS AUTOMOTIVE & COMPOSITES DIVISIONS

Thank You

Any Questions?