

SPE-Automotive Composites Conference Conference / Troy, MI, USA

Long Glass Fiber-Polypropylene Light Weight Instrument Panel Retainers & Door Modules

Matthew Marks September 16-18 2008

Sharing our futures

Contents

- 1. A brief history of door modules and IP's
- 2. Materials
- 3. Costs
- 4. Thin wall design
- 5. Warpage control
- 6. Trends
- 7. Conclusions

History: 2002 to present

Comments at that time:

This is for the Ford Fiesta.

Why are there no other cars?

Disbelief in door module concept.

It is an extra part.

Assembly outside current line considered complicated

Situation 2008 - LGF-PP Door modules

in production or development

Ford VW Skoda Hyundai Kia Fiat Mercedes Chrysler BMW Jaguar

and injection molded hatchback doors

4

Dashboards examples LGF-PP Standard Injection Molding

VW: Golf, Golf Plus, Touran, Bora, Jetta Skoda: Octavia, Superb Audi: A4 Ford: Fiesta, Focus, Fusion **Mercedes:** A, B, C, M, R Volvo: S40, V50 **Opel:** Vectra

5

2. Materials

Both dashboards carriers and door modules:

- Good flow
- High stiffness
- Safe fracture
- Dimensional stability

and more recently: <u>Light weight (why more</u> recently?)

High impact strength is not required, but good crash behavior is. Example: Dashboard carriers don't need Charpy notched > 10 kJ/m^2 , E.g. short glass mSMA can be OK

Material choice IPs

20% long glass PP

+ thin-wall possible (t=1.7mm, 2000 ton)

0 needs thorough knowledge of warpage predictions to guarantee correct shape.

PP talc 20%

- low stiffness/strength at 80° C (2.5mm PP/talc = 1.8mm LGF-PP)

+ material price/kg (not per part?!)

SMA short glass 12%

- poor flowability (2.5mm, 4000 ton)

- 0 same mechanical properties as LGF-PP 20%
- + warpage OK, foam adhesion easy

3. Costs

Cost price calculation example IP carrier

Calculations basis is design / development for 3 different OEM dashboards:

Calculated weight factor IP-carrier

	mSMA-SGF 12%	PC/ABS unfilled	PP-LGF 20%
Density	1.15	1.15	1.05
Density factor	1.10	1.10	1.00
* mSMA min wall thickness = 2.2mm	Density factor = $\frac{\rho_{\rm N}}{\rho_{\rm P}}$	P-LGF	s factor = $\frac{E_2 \times (t_2)^{2.2}}{E_1 \times (t_1)^{2.2}}$
Rel. Wall thickness	1.22*	1.39	1.00
Density factor x Wall thickness	1.34	1.52	1.00
Weight of Instrument Panel of 2900 cm3 [kg]	3.97	4.57	3.0

Cost Price Calculation IP - Assumptions

10

Material Cost Price IP Calculated weight factor IP

	mSMA-SGF 12%	PC/ABS unfilled	PP-LGF 20%	
Material weight [kg]	3.97	4.57	3.0	
Material price / kg [\$]	110%	125%	100%	
Material cost per part [\$]	145%	190%	100% including delta for flame treatment	
Low density Step: Step-1 Largement B: Step Time = 1.000 Primary Var: U, Bannitude High stiffness (high temperature)				
11			میابک	

4. Thin wall design

"Light weight design" has been a topic on all international congresses for years.

Is it becoming more of a new requirement? Differentiator?

=> Solution: Materials + Engineering

- 1. Molding thin walls
- 2. Design optimization

Design optimization – 1 clever design

Example door module

From "metal" design

To plastic

+ Wall-thickness optimization typical 1.0-1.5 to max. 3-4 mm

Effect clever design Front-end structure

Clever design

Contour Contour (Analysis system) U:\anim1.h3d U:\anim2.h3d Displacement (Mag) Displacement (Mag) Subcase 1: S2 - Lock force [9] Subcase 1: SUB2 - Lock force -0.0114 -0.0114 -0.0100-0.0100 -0.0086 -0.0086 -0.0071 -0.0071 -0.0057-0.0057-0.0043 -0.0043 -0.0029 -0.0029 -0.0014 -0.0014 0.0000 0.0000 No result No result Max = 0.0025 Max = 0.0090 Min = 0.0000 Min = 0.0000 Factor 4 increase in stiffness, just by design. Or 2 kg = 33% weight + cost saving on total front-end. <u>ے الے ا</u>

Standard design

Design optimization, Anisotropic

Use fiber orientation from flow.

عندالهد

Design optimization, Anisotropic

Using anisotropy! Up to 20% weight saving compared to isotropic.

5. Warpage control

Filling is not the issue, large IP can be filled with one gate!

- => One important issue: **Warpage control**.
 - → Effect fiber length on <u>fiber orientation</u>.
 - Long fiber Ci/Dz/ λ coefficients as f(glass%, length, thickness)
 - ➤ Effect gating strategies, spring-forward predictions, etc.

Own SABIC Moldflow version and knowledge developed and still ongoing.

Developments in simulations *Dashboards/IP-carriers*

1. Warpage of both "as molded" and "trimmed" dashboard.

Primary Var: U. Magnitude Deformed Var: U. Deformation Scale Factor: +1.000e+01

Developments in simulations *Dashboards/IP-carriers*

2. Warpage of **assembly** in car:

+ vibration welded air ducts, glove box, etc.How does it fit into the car and when mounted?

Thin-wall dashboard is flexible. Out of the mold shape may be quite different compared to assembled shape.

Note:

Special method developed for vibration welded assembly warpage.

20

6. Trends

- 1. Only recently first examples of weight and wall-thickness optimization in door modules.
- 2. Structural upgrade of dashboard carriers

Cross car beam

3. Other light weight alternatives?

Foaming? Injection-compression?

Needs validated impact simulation

+ test bar validation

+ component validation

Example of dynamic validation Component test, beam compression

Example of dynamic validation

Component test, beam compression

Measurement vs. calculation unfiltered

Side impact crash simulation

<u>ے الے ا</u>

27

Conclusions

- Door modules/IP-carriers in LGF-PP have become common practice. Reasons: Low weight, low cost.
- Thin wall molding is state of the art, but weight optimization is just getting accepted.
 - => large cost/weight saving potential.
- Warpage control knowledge key to success for LGF-PP.
- Trends for more structural dashboard carriers.

