INNOVATION

ACCE September 11th - 13th 2007

FTS Technologies

Accelerated Thermo-Molecular Adhesion Process. (ATmaP®) - An Advanced Surface Treatment Technology.

Presented By: Russell Brynolf

Introduction

Objectives of Today's Discussions

- Understand the need for change in the manufacturing process of painting and bonding of interior and exterior Thermo-Set and Thermo-Plastic materials and how that change will impact the environment - Automotive Plastics Industry.
- Seek to understand The ATmaP® Surface Treatment Technology on painting and bonding of materials such as metals, plastics and composites.
- To present the potential cost and environmental benefits.

Present the ATmaP® Technology on Two Levels:

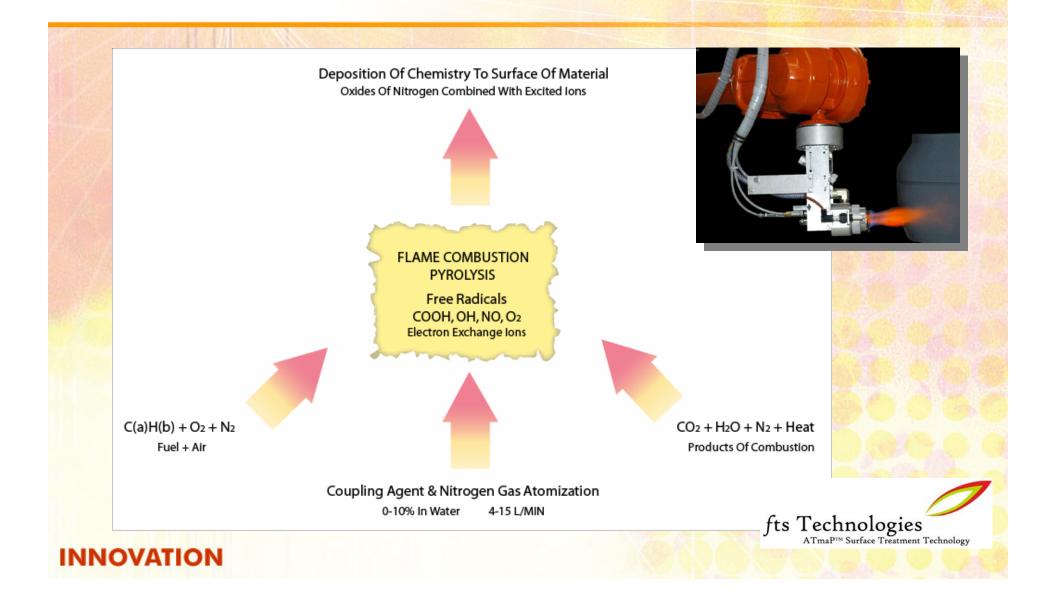
- Technical
- Environmental

Current Production Process: Adhesion Promoter

- Low Solids / High Solvents
- Chlorinated Polyolefin's CPO's
- VOC's Typically 7 lbs/gallon
- HAP's Typically 2 lbs/gallon
- Energy Usage RTO's etc
- Green House Gases e.g CO₂

ATmaP®

ATmaP® Is A Robust, Engineered Surface Treatment That Is Specifically Designed To Increase Qualities Of Adhesion To Polymeric Substrates. ATmaP® Combines Combustion Generated Covalent Reactions With Vaporized Chemical Coupling Agents To Permanently Modify The Surface Structure Via An Increase In Surface Functional Groups

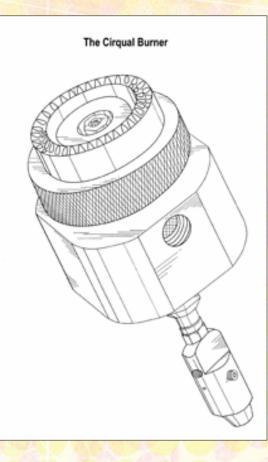

It Is A Cost-effective, Highly Durable And Environmentally Friendly Proven Process, Recognized And Accepted By A Number Of OEM's Globally

It is **NOT** Flame Treatment

ATmaP® Chemistry

'Cirqual®' Burner Technology

Purpose


One Step Processing

Functions

- A Treatment Mechanism
- Consistent Spray Delivery
- Customizable Flame Shape

Modular Construction

Easy to Remove/Replace Key Components

Typical Automotive Applications

Treatable Materials with ATmaP® Technology Include

- **Exterior Applications: Interior Applications:** TPO/PP (Painting, Plating, Bonding, (Bonding & Soft Touch Paint) Laminating & Taping) Chrome Door Panels **Bumper Fascia** Instrument Panels **Body Side Moldings** Air Bag Covers Metal/Steel Wheel Covers Door Pillars Grills (Painted & Chromed) Seat Covers **Body Panels** Gaskets & Seals Rubber
 - Composites

INNOVATION

Bonding of Suspension components

Encased Structural Composites

Structural Bonding of body panels

Treating Variables

Key Measurable

- Oxygen Contents
- Surface Velocities
- Traverse Speeds

Generation of Process Windows

Reactor & Compounded Materials

- Definition
- Flex modulus
- Relationships
- Key Variables

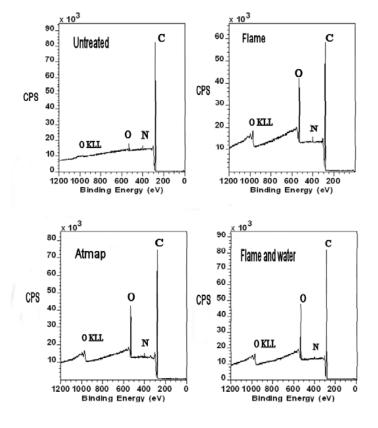
Process Consistency

Process and Enhanced Performance Characteristics

- Measurable and Consistent
- Surface Resistance
 - Permanent
- Robust and Durable
 - Improved adhesion to
 - High pressure water Jet
 - Gasoline resistance
 - Stone chip
- Proven Reduction in Warranty Claims
- LOW Capital Cost

Pull Strength Test

ADPRO System Gasoline Resistance ATmaP System Gasoline Resistance



Validation Of Treatment

- Generation of "key functional groups" on the surface of the treated material.
 - Compatibility with the coating to be used will provide consistent, robust, and repeatable adhesion.
 - Measurement of such is expensive and not very practical in production. Therefore other methods must be sought to act as a guide.

XPS Data

	Relative Atomic Concentration							
SAMPLE Ź	С		0		N		Si	
UNTREATED		96.73	1	1.87		1.40	Ź	
FLAME Ź		86.70	6	12.70		0.60	Ź	
FLAME AND		1997	1				10	
WATER		86.35		12.57	1	1.07	Ź	
ATMAP Ź		84.24		13.01		2.12		0.63

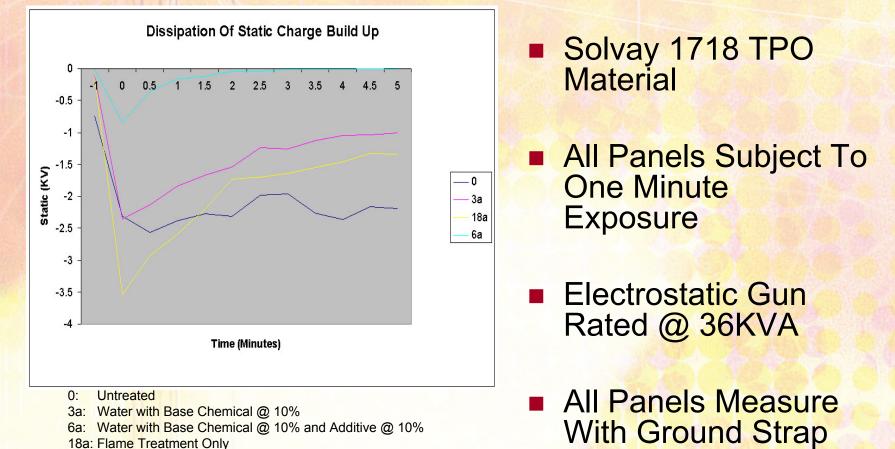
Measurement Of Treatment

Measurement of Surface Energy

- Dyne Inks
- Static, Advancing, & Receding Angles
 - Advancing Angle Relates to Surface 'Wettability'
 - Receding Angle Directly Relates to Adhesion Quality

Plaque Type	Dyne Lev	Static Angle	Advancing Angle	Receding Angle
Untreated	<32	97° / 96°	97° / 96°	88° / 89°
Flame Treat	>56	70° / 69°	71° / 75°	28° / 25°
ATmaP®	n/a	39° / 60°	35° / <mark>58</mark> °	16° / 10°

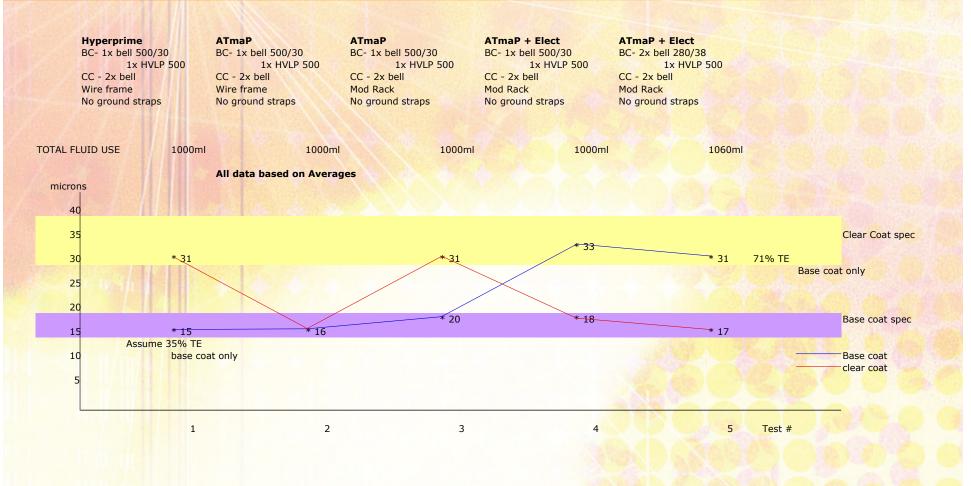
Results Show That ATmaP® Achieves 30%-60% Greater 'Wettability' and Adhesion to Polymeric Substrates



Effects of Static Charges

- Paint line design is empirically a generator for static build up. Heating and cooling cycles, high air flows across a plastic combined with the introduction of a negative charge through electro-static's.
- Most TPO's do not have internal Anti-static agents which bloom to the surface providing dissipative qualities but potentially affecting adhesion.
- Applying External anti-static agents can compromise adhesion.
- Adhesion promoter is a conductor providing a path to ground but only effective where the path resistance is low and consistent with the part profile.
- Removal of conductive Adpro's from the paint system will allow building of a charge within the plastic and adversely affect TE.

Dissipation Graphs


18a: Flame Treatment Only

fts Technologies

Attached

Application Variances and Transfer Efficiency

The Environment -How we "Must" be better

'Design for the Environment'

- Use Alternative Surface Treatments
- Elimination of VOC's and HAP's
- Reduce Energy Consumption and Emissions
- Reduce Manufacturing Cost
- Take Responsibility For Being A Good Corporate Citizen By Being Environmentally Conscious

Environmental

Lower Costs:

INNOVATION

- Lower Energy Usage Over Traditional Processes
- Lower Emissions Carbon Footprint
 - Significant Reduction in CO2 Emissions
 - No VOC's or HAP's produced
 - Environmental Credits
 - Can Be Fully Calculated Via Use Of Carbon Footprint Analysis (FTS)
- Zero Production of Solid Waste
 - No Clean Up Costs
 - No Disposal Costs
- Reduced Cost Of Compliance
- Reduced Risk Of Cost Of Non-Compliance

ATmaP Received A DaimlerChrysler "Environmental Leadership Award: Nov 2005 ATmaP Was Awarded A US EPA 'Clean Air Excellence Award': April 2006


fts Technologies

CO2 and Energy Comparison

SCFM	20,000
Efficiency Rating of RTO	40%
# of Annual Fascias	1,000,000

CO2 Emissions			
	Per Day (Metric Tons)	Per Year (Metric Tons)	
Adpro	23.22	5572.06	
ATmaP®	0.40	96.92	
Variance:	22.81	5475.14	

Natu	ral Gas Amount Needed, a Over a One Ye		ssociated
	CF/Year	Co	ost to Company
Adpro	66,708,369.41.	\$	1,000,625.54
ATmaP ®	1,160,378.95	\$	17,405.68
Variance	65,547,990.46	\$	983,219.86

Adpro ATmaPŖ	2668.61 46.42
	A CONTRACT OF
Energy Co	st Per Fascia
Adpro	\$ 1.00
ATmaPŖ	\$ 0.02
Total Energy Sa	vings
\$ 983,21	9.86 Annually

fts Technologies

Environmental Innovation: Success!

ATmaP® Surface Treatment Technology

- United States EPA 'Clean Air Excellence' Award
- DaimlerChrysler 'Environmental Leadership' Award

Suppliers Partnership For The Environment

US & Worldwide Patents

ATmaP® (Accelerated Thermo Molecular Adhesion Process)

"Method And Apparatus For Treating Substrate Plastic Parts To Accept Paint Without Using Adhesion Promoters"

United States Patent & Trademark Office # 6,582,773 B2 # 6,716,484 B2 # 528869 New Zealand Patent

Further Worldwide Patents Pending

Cirqual® Burner

United States Patent & Trademark Office # 6,796,793 B2 Further Worldwide Patents Pending

ATmaP® Is A Registered Trademark of FTS, LLC (Serial # 78/193734)

Cirqual® Is A Registered Trademark of FTS, LLC (Serial # 78/193738)

Thank you for your attention!!

Acknowledgements

Jamie Brynolf Dr. Firas Awaja FTS Technologies Deakin University

Questions???

