

Near Ready, Real Potential

The Feasibility of Using Natural Fibres for Reinforcing Thermoset Composite Parts for Ground Transportation Applications

Biofibres Development Approach

Use existing plant varieties initially

Review current harvesting techniques, develop & implement alternates

Develop new decortication technologies to provide a natural fibre source

Define composite part & engineered mat req's

Identify & implement a holistic fibre grading approach Develop a material preparation and mat making capability

Investigate and develop suitable fibre surface treatments

Identify and select suitable resins

Identify/develop additional test methods

Perform panel and part manufacturing trials

Evaluate composite panel properties

Produce and test inservice composite parts

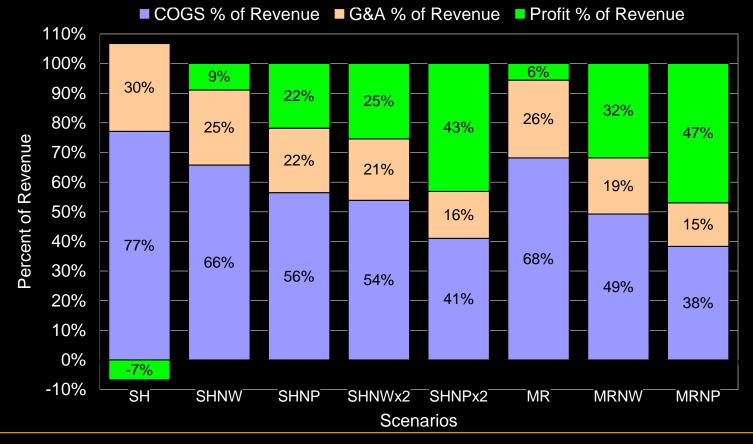
Market Size (E-glass Composites)

- The demand for E-glass fibre in North America in 2004 was estimated to be around 1.4 billion lbs, or over 632,000 tonnes
- Available in a variety of forms, of which chopped strand and chopped strand mat are initially the most favourable forms for biofibres

Gilseed Flax Fibre Availability (Canada)

Flax Volume

Low Estimate	36,562	m^3
High Estimate	138,571	m^3
Favourable Glass Forms	Volume	
Canada	4,213	m^3
North America	42,130	m^3



Scenarios Investigated

Scenario	Raw Fibre Input	Primary	Secondary	Glass End Market Target
Abbre.		Processing	Processing	
SH	Salvaged	Hammer Mill +		Loose Fibre, Low Quality
	Oilseed	Screening		
SHNW	Salvaged	Hammer Mill +	Nonwoven Mat	Chopped Strand Mat,
SHNP	Salvaged	Hammer Mill +	Nonwoven + Needle	Chopped Strand Mat, Low
	Oilseed	Screening	Punch	Quality
SHNWx2	Salvaged	Hammer Mill +	2 lines Nonwoven Mat	Chopped Strand Mat,
	Oilseed	Screening		Lowest Quality
SHNPx2	Salvaged	Hammer Mill +	2 lines	Chopped Strand Mat, Low
	Oilseed	Screening	Nonwoven + Needle	Quality
MR	Managed	Roller / Shaker		Loose Fibre, High Quality
	Oilseed			
MRNW	Managed	Roller / Shaker	Nonwoven Mat	Chopped Strand Mat, Low
	Oilseed			Quality
MRNP	Managed	Roller / Shaker	Nonwoven + Needle	Chopped Strand Mat, Mid
	Oilseed		Punch	Quality

Calculated COGS, G&A and Gross Profit As % Of Revenue

- Scenarios incorporating a biofibre mat line(s) suggested sizable profits could be gained.
- The production of loose fibres from oilseed flax was the only form that was not considered commercially viable
- Hemp also has some potential to be more economical than flax due to increased biomass per hectare
- Full Marketing Report available for download at:

http://www.compositesinnovation.ca/FTP/website/biofibre.php

Fibre Processing Scenario Comparison Tool (Excel) available with Marketing Report to produce custom scenario analysis

Baseline Technical Ability

- Objectives
 - Establish a method to manufacture composite panels from flax fibre mat using existing industry practices
 - Determine baseline properties through physical and mechanical testing and compare results to E-glass panels of similar fibre volume content
- NOT optimized a starting point from which optimization can occur
- Process selected was resin infusion using a polyester thermoset resin matrix

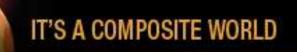
Properties

Properties	Comparative Results for Flax Panel
Acoustic Transmission Loss	 Better sound damping capabilities than glass
Water Absorption	 Small increase in water absorption over glass in 2 hr submersion Large increase in water absorption over glass in 24 hr submersion No measurable swelling
Surface Flammability	 Reduced flammability resistance compared to glass
Heat Distortion	 Reduced performance at high temperatures compared to glass Improved performance over neat resin
Charpy Impact	 Significantly reduced performance compared to glass Reduced performance compared to neat resin

Properties Continued

Properties	Comparative Results for Flax Panel
Corrosion Resistance	 Properties similar to glass
Operating Temperature	No visual degradationProperties similar to glass
Flexural Strength	 Significantly reduced performance compared to glass Reduced performance compared to neat resin
Tensile Strength	 Significantly reduced performance at high temperatures compared to glass Reduced performance compared to neat resin
Flexural Modulus	Reduced stiffness compared to glassImproved stiffness over neat resin
Tensile Modulus	 Reduced stiffness compared to glass Improved stiffness over neat resin

- Areas for Optimization
 - 🖷 Fibre Matrix Bond
 - Reducing impurity content in flax
 - Fibre consistency
 - Engineered mat structure
- Current Applications
 - Non-structural, dry environments where weight savings with comparable acoustic damping needed
 - 🖻 Ducts
 - 🖻 Headliners



Compatibility of the Matrix/Fibre Bond Objective

- Identify a commercially available thermosetting resin which exhibits strong bonding capability with natural fibres
- Assess the strength of an interface bond and fibre/resin compatibility using multiple test methods

Constraints

- Several thermosetting polymeric resins to be investigated
- Resin selection will be based on typical industry practices and material prices
- Oilseed flax fibre currently grown in Canada
- Vacuum assisted resin infusion processing

Compatibility of the Matrix/Fibre Bond

Multiple evaluation techniques in consideration, minimum of three to be used

Atomic Force Microscopy

Single Fibre Pull-Out

Confocal Laser Scanning Microscopy

Compatibility of the Matrix/Fibre Bond

This slide will contain data on the results we have collected as of September

Scheduled end of project for Beginning of October

Developing Engineered Mats

Objective

- Develop an engineered mat from natural fibres to replace Eglass chopped strand mat (CSM) in fibre reinforced thermoset components
- Targeted end-use is in resin infusion processes to produce parts for the ground transportation industry
- Primary fibres are flax and hemp varieties currently cultivated in Canada, although other materials may be added to meet performance specifications

Developing Engineered Mats

- Specifications are finalized for a mat product: purity, consistency, physical and mechanical properties and compatibility with thermoset resins and processes
- Four potential sources are identified capable of mat manufacture and/or development of pre-commercial equipment to produce the mat
- Existing flax and/or hemp mats are obtained from other sources, panels fabricated, tested and compared with E-glass
- Mat process method(s) is/are selected for upgrade to precommercial pilot plant scale
- Economic processing data is generated sufficient to prepare a business case that supports economic viability of the processes selected

Developing Engineered Mats

- This Slide will contain information on the current status of the project by September
- Project has just started (June 11th)
- Project scheduled to be completed March 2008

Fibre Testing Protocol

Objectives

- Identify relations between fibre properties and affect on composite performance
- Establish test methods to quantify fibre properties which affect performance and document the procedures
- Perform multiple fibre tests and create composite samples from fibre forms to build statistical data on fibre properties vs composite performance
- If possible, identify acceptable ranges of variation in fibre properties which do not adversely affect the composite end product for use in quality control

Fibre Testing Protocol

Proposed Fibre Tests may include, but are not limited to:

- Degree of Ret
- 🖷 Fineness
- Straightness
- Impurity Content
- strength
- 🖷 Density
- Fibre Constituents (wax, cuticle, lignin and or pectin content)
- Hydrophobicity

Fibre Testing Protocol

Proposed Composite Tests may include, but are not limited to:

- Microstructure analysis
- Resin/matrix interface properties
- 🖷 Density
- Water Absorption
- Flexural Strength
- Tensile Strength
- Impact Resistance
- 5 Fibre Content

Fibre Testing Protocol

- This slide will discuss any progress achieved or test results collected before September
- Project scheduled to start Mid July
- Project schedule for completion March 2008

Near Ready, Real Potential

- Producing fibre for the composites industry has potential to make money for farmers, processeors and composite manufacturers
- Current baseline flax material harvested in Canada and processed using known technology is able to manufacture nonstructural composite parts and show a weight saving
- Resins will be selected to optimize matrix/ fibre bonds
- Engineered mats to be produced to introduce natural fibres to structural applications
- Fibre assessment system to be developed to quantify fibres with their composite performance and ultimate lead to standardized testing and grading systems

