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Abstract 
A new, 2-piece, hybrid steel / glass-mat thermoplastic (GMT) composite instrument panel (IP) carrier 

reduces weight, noise / vibration / harshness (NVH), and cost while simultaneously improving parts 
consolidation and assembly vs. traditional, steel-intensive, multi-piece systems. In fact, for the first time ever in 
a single carrier design, this IP retainer meets or exceeds all world crash requirements.  The award-winning 
design is currently featured on 6 IPs in 12 vehicles from Ford, Volvo, and Mazda.  This paper will discuss 
design, development, and testing of this common carrier, plus the technology breakthroughs that helped make 
it possible.   

Background  
The IP – and especially its carrier – plays a very important structural and safety role in a passenger vehicle.  

Functionally, it forms the skeleton of the cockpit, providing the base architecture off of which IP components 
are attached and function.  The carrier: 

• Holds the front-end of the passenger compartment’s command center,  

• Is the component from which the IP topper pad, airbag, instrument cluster, center stack, knee bolsters, and glovebox 
assembly are attached, 

• Supports the steering column,  

• Ties left and right sides of the vehicle together at the A-pillars,  

• Stiffens the front end of the vehicle for a crash,  

• Holds the airbag deployment canisters and heating / ventilation / air conditioning (HVAC) system, and 

• Transfers loads for opposing sides of the vehicle during offset crashes to prevent crushing inwards into the passenger 
compartment. 

 
IP carriers are required to pass rigorous testing because they must withstand high loading during impact.  

Unfortunately, requisite safety standards and tests vary by geography, making it difficult to design a common 
carrier for multiple geographies without over-engineering.  

The IP including its carrier are important components of the larger cockpit module, which is one of the most 
challenging systems to design and manufacture in a vehicle. This is due both to the complexity of its design 
and its role in maintaining passenger safety in the event of a crash.  The cockpit is also heavily component 
oriented and influenced by the design culture of a given OEM.  Most cockpits are characterized by mature 
designs and make use of traditional components.    
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Despite all this, there is tremendous opportunity for innovation in the cockpit module and particularly with 
the IP carrier because these systems tend to be component, cost, and weight intensive, and because the 
majority of them still make use of very traditional design and materials of construction. 

Taking a New Approach 
Tier 1, Faurecia (www.faurecia.com) has developed an innovative new design methodology that permits 

the production of multifunctional components and integrated cockpit systems.  Called Syntes, this new cockpit 
strategy is intended to: 

• Meet or exceed all global safety requirements and cost targets,  

• Commonize components and systems across multiple platforms and models,  

• Reduce weight, systems costs, part count, and warranty issues, and 

• Retain each vehicle’s signature look and feel.   
 

The system is highly integrated, increasing performance while simplifying manufacturing and assembly.  It 
integrates more than a dozen separate features and is lighter than traditional steel-intensive cockpits. Such an 
approach facilitates the creation of robust products while ensuring efficient space utilization, lower mass and 
systems costs, and lean production with the ability to assemble via conventional production methods on 
existing production lines.   

The new hybrid-material IP retainer is an important component of this integrated cockpit system and makes 
use of Faurecia’s 10+ years of experience with hybrid structures. The same carrier and integrated cockpit 
system is now used with 6 IP designs, on 12 vehicles, for 3 OEMs sold worldwide – the Ford® Focus® and C-
Max®1, the Volvo® S40®2 and V50®, and the Mazda3®3 passenger vehicles.  These modules benefit from both 
the evolution in and adaptation of technologies such as injection- or compression-molded, long-fiber-reinforced 
thermoplastic (LFT or LFRT) composites with a polypropylene (PP) matrix; or steel overmolding (insert 
molding); and vibration welding of plastics.  Also important are still-evolving computer-aided engineering (CAE) 
technologies that help ensure more efficient use of package space and faster design-to-production cycles via 
new software that optimizes component thickness, geometry, and load path. 

Balancing Design Needs Using a New Tool 
Instead of taking the usual component-by-component approach, a cockpit teardown and functional analysis 

is first performed as part of the new design methodology. To better balance often competing design needs 
during the advanced engineering phase, the company uses a comparison matrix.  This tool helps the team 
more objectively select new concepts where functionality and geometry differ from current production models 
and provides support for the design and synthesis of systems under development. It works as follows: 

• The generic functional analysis is the backbone of the tool.   

• From this, a generic checklist for each functionality being studied is created.  Key features and requirements are 
considered, such as: 

                                                      
1 ® Ford, Focus, and C-Max are Registered Trademarks of Ford Motor Company. 
2 ® Volvo, S40, and V50 are Registered Trademarks of Volvo Car Corporation.  
3 ® Mazda and Mazda3 are Registered Trademarks of Mazda Motor Corporation. 
 

o Passive safety, 

o Environmental performance,  

o Recyclability, 

o Weight saving, 

o Durability, 

o Climate performance, 

o Ergonomics, 



Page 3 
 

o Storage space, 

o Design & equipment performance, 

o Noise, vibration, & harshness (NVH) performance, 

o Serviceability, 

o Fire resistance, and 

o Suitability for manufacture via conventional OEM assembly process. 

• OEM specifications are used to assign the weighting (importance) associated with each item on the checklist. 

• Finally, concepts are proposed for quotation and the results of each are consolidated onto a graph such as 
that shown in Figure 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  A comparison matrix is used early in the development program to evaluate the potential for various designs to meet 

program objectives and constraints.  The matrix shown here represents an actual study of various hybrid cockpit concepts. 
 

Use of the comparison-matrix tool allows the team to weigh the ability of different concepts to fulfill 
all of the project’s objectives and constraints. This analysis evaluates most of the program’s criteria – 
from research to serial production, industrial risk, planning management, and potential of performance 
breakthrough. During the analysis, different concepts are previewed and their compatibility and 
potential for meeting program goals are estimated. At this brainstorming stage, possible implementation 
of innovative technology and / or use of multi-material systems is also analyzed.   

Not surprising, cost and weight reduction remain the central design constraints for hybrid cockpit 
design, yet they also provide the greatest opportunities for innovation.  By graphically comparing 
program requirements with the potential of various designs to satisfy those needs, the cross-functional 
approach represented by the matrix ensures that mandatory performance parameters are considered 
and met.  For instance, not only are design and processing considered, but failure-mode and effect 
analysis (FMEA) is also evaluated to alert if implementation of the developmental system might require 
changes to the existing manufacturing process. 
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Initiating a Development Program  
Concept development for the first integrated cockpit design began with an advanced engineering 

project at Volvo Car Corp. in 1996.  A year later, a formal partnership (Volvo / Faurecia) was 
established to deepen the advanced engineering project and to ensure that all core competencies 
required for developing the program were available. The project was heavily expanded between 1999 
and 2001, becoming an international, cross-brand development and industrialization project.  The 
integrated cockpit system resulting from this program was launched in 2003 on an entire transverse-
mounted-engine platform within the Ford Group representing collaboration amongst Mazda, Ford, and 
Volvo for the models previously noted.   

Rethinking the IP Retainer  
A traditional metal IP carrier (Figure 2) is essentially a steel tube – often called the cross-car beam 

(CCB) – off which hangs multiple components, including: 

• 2 end brackets (to secure the IP to the body-in-white (BIW) on each side of the car),  

• 1 cowl top brace,  

• 1 steering column bracket, 

• 1 fuse-box door bracket,  

• 1 footwall brace,  

• 1 tunnel brace,  

• Central display-unit structure, and  

• Several glove-box brackets.   
 

This system provides excellent crash resistance and stiffness, but is heavy, labor intensive to 
assemble, and can lead to NVH issues due to all the components and their fasteners.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Traditional metal carrier with multiple components and bracketry, including the cross-car beam.  This design has 
been replaced by a single-piece hybrid steel/composite design, which saves mass and costs and simplifies assembly. 
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In a significant departure from traditional IP carriers, the structure that emerged from the advanced 
engineering phase was a 2-piece hybrid retainer comprised of steel and 2 types of glass-reinforced 
polypropylene composite, as shown in Figures 3, 4, and 5.  Design of the new hybrid cockpit 
incorporates the traditional CCB function (now reduced to a small steel tube), while also providing 90% 
of the cockpit attachment and reference points.  It also includes the IP’s ventilation and defrosting 
channels, which are formed as a box section when the lower IP carrier is vibration welded to the upper 
IP. Moving from a multi-component, steel design to the hybrid composite design was a key element to 
meeting program goals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Solid model of hybrid steel/glass-reinforced polypropylene composite cockpit structure:  Light grey (middle) 
component = compression-molded, glass-reinforced polypropylene lower instrument panel (IP) carrier; black (bottom, 

overmolded with carrier) = steel cross-car beam; and light grey (top) = injection-molded, LFT PP upper IP frame. 
 

Figure 4 shows a model of the upper IP frame, which is injection molded from polypropylene-based 
long-(glass)-fiber-(reinforced) thermoplastic (LFT or LFRT) composite.  This part is subsequently 
vibration welded to the IP carrier.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  The upper IP frame is injection molded from LFT polypropylene with 40% long-glass fiber reinforcement.  The lower 

IP carrier is subsequently vibration welded to the upper IP frame. 
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Figure 5 shows a solid model of the 1-piece lower IP carrier, which is formed by insert molding a 
minimized steel cross-car beam with a compression-molded glass-mat thermoplastic (GMT) composite 
of polypropylene and chopped long-glass fiber.  The steel beam is necessary in this hybrid part to meet 
critical safety requirements that cannot be met with the current composite IP structure alone. The 
complete hybrid structure contributes to the crash behavior of the complete vehicle body.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  The compression-molded glass-mat thermoplastic (GMT) composite lower IP carrier is reinforced with 40% long-
glass-chopped fiber.  The cross-car beam (now reduced to a small tube) is insert-molded in the tool in a single operation. 

 

This hybrid steel/composite design features a highly complex molding that incorporates the cross-
car beam, and integrates the functions and fixations for the air ducting, airbag support, steering-column 
support, and knee bolster (see Figure 6).  Bushings are added afterwards.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  The high-level of functional integration achieved with the hybrid cockpit design allowed for reductions in components, 

mass, and costs and facilitated assembly. 
 

The design of the hybrid IP carrier greatly simplifies assembly, improves NVH performance, 
reduces mass, and – for the first time ever with a single carrier design – meets or exceeds all U.S., 
European, and world safety standards (for full frontal and offset crashes with belted and unbelted 
occupants) – actually improving crash performance in some tests vs. the baseline steel design.  It does 
all this while reducing overall manufacturing costs, and offering high productivity, and high repeatability 
and reproducibility (R&R) on low-cost tooling. 

With a high level of integration, the new hybrid IP carrier offers an optimum balance in terms of 
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production volumes, mass, world crash performance, and mechanical properties.  In fact, because the 
same common system can now be used for so many different styles and platforms, tooling costs were 
significantly reduced, as was the cost of analysis and crash testing.  Additional program savings were 
achieved through clever tooling design, since an insert is used so the same set of tooling can mold IPs 
for both left- and right-hand drive vehicles. Owing to the large number of vehicles (and interior designs) 
this retainer would be used for, parts were customized by using punching dies to create holes to 
accommodate various components. After the vehicle’s useful life, the IP carrier can be disassembled 
and recycled, since it is made of a polypropylene/chopped glass fiber composite and the steel beam.  
The beam itself can easily and cleanly be separated from the composite carrier using a standard 
hydraulic shearing machine, as shown in Figure 7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  The hybrid steel/composite IP carrier can easily be disassembled and recycled at end of vehicle life. By using a 
standard hydraulic shearing machine, the beam can cleanly be removed from the rest of the composite carrier. 

 

Technology Breakthroughs Required for Design to Succeed 
Several technology breakthroughs were required to make this new hybrid-material IP retainer a 

reality.   

The first problem was to identify a composite material and molding process that would provide 
sufficient impact strength, plus high flowability to avoid knitlines. This would help ensure the small steel 
tube (that was now the cross-car beam (CCB)) was fully encapsulated at junction points during molding 
of the lower part of the retainer, as it is very important for this part to absorb energy during a crash 
without brittle failure. (Initially, the LFT process had been used to mold the lower IP carrier as well as 
the upper IP frame due to cost.  However, the LFT design could not pass crash requirements for this 
structural component.  Hence, an alternative material / process combination needed to be found.) The 
second challenge was to find a method of molding the carrier and minimized CCB that did not crush the 
steel tube.   

Faurecia turned to its Tier 2 molder, FPK (www.fpksa.com/index_con_fla.html) from Spain to solve 
both issues. FPK had been involved with Faurecia on concept development for the IP carrier from 1997 
and the early advanced engineering phase. In fact, FPK worked to define the part not only in terms of 
functional requirements, but also mass and cost goals, plus to meet other desirable qualities such as: 

• Reducing the thickness of trim (waste) areas to a minimum while still permitting material flow. 

• Optimizing the wall thickness of functional areas by using a rib design, helping avoid overly thick sections. 

• Designing part to allow punch-outs (for component insertion) while using the minimum number of steps. 

• Defining the joint system and fixation points to avoid as much as possible use of additional steel clips or 
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inserts. 

• Delineating the part’s topography to optimize mold construction (e.g. in terms of cooling). 

• Characterizing the reference part and locating points to meet fit and finish requirements. 

• Ensuring that the steel CCB and associated links would be compatible with the over-molding process while 
still meeting all safety requirements. 

• Optimizing logistics and storage.  

To help meet these requirements, FPK went to Quadrant Plastic Composites AG 
(www.quadrantcomposites.com) to solve the materials portion of the challenge.  FPK and Quadrant 
worked to make the part as thin and light as possible while still meeting the price and impact targets 
specified.   

Quadrant made 2 contributions to the project.  First, the company developed a new grade of glass-
mat thermoplastic (GMT) material – Quadrant GMT E100F40F1 composite – that not only provided 
higher impact strength, but also did so while meeting all performance targets at 2 kg lower weight.  FPK 
worked closely with Quadrant to develop the best blank layout pattern in the tool that would allow the 
complex part to fill without knitlines.   
 

The first part of the solution came from modifying the material.  Fortunately, in order to achieve high 
adhesion between the tube and the composite, no fundamental changes were required to the base 
resin, or to the glass or coupling agents used in the mat.  Adhesion is achieved purely on the basis of 
shrinkage. However, three minor modifications were needed to meet other requirements of the IP 
carrier.   

Meeting Tougher Thermal Requirements 
The first change was that a new package of heat stabilizers was added to the resin matrix in order 

to meet new Volvo requirements for long-term heat aging. The previous requirement had been no 
degradation of the polymer for 1,000 hr at 85C.  The new requirement boosted the timeframe to 6,000 
hr at the same temperatures and conditions – a significantly longer period of time.  To meet this 
tougher constraint, a whole new package of heat stabilizers had to be developed, as it was necessary 
to balance thermal stability during processing (shorter time / higher temperatures) with this long-term 
heat-aging requirement (longer time / lower temperatures).   

Modifying the Mat Structure 
The second modification involved changing the structure of the mat.  This allowed Quadrant 

engineers to fine-tune material properties and material flow in the tool.   

On one side of the IP carrier, high impact strength was required.  On the other side of this complex 
part, good flow properties were needed to fill design details without creating knitlines.  Normally, the 
changes made to improve one of these requirements would in turn reduce the other property as well. 
For example, in GMT materials with chopped mats, higher impact is usually achieved by using a higher 
proportion of glass fibers of longer length. In contrast, better flow and filling of design details with these 
materials is usually achieved by using more glass fibers of shorter length.  Hence, it was difficult to 
meet both requirements simultaneously with a single material.   

Quadrant was able to achieve the desired property balance by manipulating mat properties.   This is 
a unique capability the company has vs. other GMT producers: the ability to cut the fibers to specific 
lengths prior to making the mat in order to change molded-part properties.  Other suppliers make mats 
from continuous glass fibers, then needle the mat once made to break up the fibers. But needling that 
way can make it harder to control fiber length and distribution ratios, and can lead to broader variations 
in fiber length as needles wear and grow less sharp.  By cutting the fibers before the mat is made, 
Quadrant can very strictly control fiber length and can achieve 4 distinctly different lengths – 25, 50, 75, 
and 100 mm – plus better control the ratio between those fiber lengths.  Careful work led to 
development of a “recipe” with just the right ratios of short-to-long fibers to provide the best balance for 
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enhanced flow and high impact for the IP carrier. 

Optimizing Blank Size & Layout Pattern 
The third modification Quadrant made to its material was to make the resultant blanks thicker – 

from their normal 3.8 mm to a custom 4.8 mm thickness. The thicker material made it possible to 
produce parts with fewer blanks, which reduced handling time and logistics costs for molding the lower 
IP carrier.  Furthermore, the thicker blanks helped to improve the blank layout pattern. One of 
Quadrant’s unique capabilities is that it can supply blanks cut to custom sizes at high precision – on the 
order of +/1 mm. Narrow tolerances were critical for this part due to its large number of fixation points. 
Hence, variation in the weight and dimension of blanks had to be very low or there would have been 
unacceptable variations in the mass and thickness of the resulting part that would have meant mating 
surfaces would not have matched up properly.  By using a computer-controlled robotic process for 
precutting blanks, then delivering the proper sizes to the customer, there was less handling and less 
chance for variation.  Quadrant has multiple laminators on which to produce product and also has the 
industry’s widest GMT laminator at 1,400 mm, so customers with large parts such as this carrier can 
opt for larger blank sizes to fill their tools.  

Developing the best pattern of blank layout in the tool to fill the part without knitlines was tricky.  
CAE codes for compression-moldable GMT materials are still in their infancy. As yet, they have not 
evolved to the level of sophistication in predicting blank flow in the tool that mold-filling software 
provides to predict fill times and patterns for injection-moldable polymers.  Hence, determining how 
many blanks were required, and what their size, thickness, and placement pattern needed to be was a 
matter of working with a code called Express®4 optimized by FPK for evaluating likely fill patterns, 
coupled with experience, hard work, and trial and error.  The key challenge to overcome was finding a 
best combination of blank-size and layout pattern that would allow material to be distributed throughout 
the tool without forcing the material to split up and then flow back together again.  The resulting knitline 
(or weldline) is notoriously weaker than surrounding polymer.  Additionally, if all the flow-fronts in the 
tool are not properly managed, and one front reaches the tool wall significantly ahead of the others – 
freezing off too soon – an undesirable orientation of glass can occur.  This was initially approached 
using the Express process simulation software at FPK (Figure 8).  The blank layout pattern was further 
adjusted through many molding trials at FPK facilities for 3 prototype phases (Figure 9).  

Developing an Insert-Molding Process 
An important task for FPK was to find a method for inserting the minimized cross-car beam into the 

press and molding the carrier without crushing the steel tube on the downstroke. The size press 
needed to mold a part the size of this carrier was 2,000 metric tons and it operates at high speeds of 
more than 50 mm/s.  In fact, FPK was awarded a process patent for solving this problem.   

                                                      
4 Express is a registered trademark of M-Base. 
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Figure 8: Process sSimulation of the IP carrier’s blank flow and fill process using GMT composite with and a specific blank 
lay-up pattern.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9:  Vertical compression molding press for production of the IP carrier ..  
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Because the goal was to minimize tube deformations, investigations began with finite-element 
simulations in the Express code to check the bending elongation of the tube in the mold in response to 
material flow pressure. Results of this analysis defined a number of positions in which the tube could be 
placed in the tool. An extreme case was defined as a situation where the steel profile would stack 
against the mold, blocking material flow.  This would lead to incorrect adhesion between the tube and 
the plastic structure, as well as reduced strength for the steel cross-member.  In addition to analyzing 
the section of the part where the CCB met the composite, the area around the tube intake was also 
analyzed.  By carefully controlling the angle of insertion of the steel tube, FPK was able to minimize the 
effects of mat and polymer entering the tube cross-section.  

Inputs from the CAE work were used to design the part. Despite the input from the finite-element 
analysis, when the first prototype parts were molded, a failure mode – tube collapse – not previously 
predicted by any of the simulations was seen (Figures 10 & 11). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 10 & 11:  Two views of the steel cross-car beam showing tube collapse, an unexpected failure mode not previously 
predicted by computer simulations. 

 

Once this situation was explored, the search began to find a combination of steel material and tube 
thickness that would be able to withstand the pressure in the tool cavity without collapsing.  Many trials 
took place at FPK to evaluate various combinations of steel quality (particularly yield stress), tube 
thickness (which together with steel quality are key factors controlling the tube’s ability to resist 
collapsing), plus the compression molding process parameters.  Although it was clear that going with 
higher strength steel in a thicker cross-section would prevent collapse, it was also apparent that this 
change would prevent the concept from meeting 2 program goals – to reduce cost and weight.   

Hence, FPK’s next efforts were focused around designing and testing a system and process to 
prevent tube damage during over-molding, which subsequently came to be called the anti-collapse 
system.  In principle, this system works by inserting a mechanical device into the interior of the steel 
tube before the flow phase of the molding cycle, which allows the tube to maintain its shape and 
structural integrity during the downstroke and subsequent flow pressures exerted by the composite 
material (Figure 12).  This process development, which was designed, developed, and commercialized 
by FPK, is now patent protected5. Use of this technique allowed FPK to maintain the integrity of the 
CCB during molding, while also meeting other project targets for performance, cost, and mass. 

                                                      
5 Development is now protected under European Patent EP 1238773.. 
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Figure 12:  Schematic of the anti-collapse system developed and patented by FPK to ensure CCB integrity while also meeting 
program goals for mass, cost, and performance. 

The steel tube is fully encapsulated at junction points by the GMT composite during molding 
(Figures 13, 14, and 15), with the resin matrix flowing completely around the beam at these locations.  
Careful control of process parameters – particularly pressure – helps provide strong knitlines.  Drop 
tests developed by Faurecia have not shown any issue with separation of CCB and composite carrier.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13:  Owing to 2 technology breakthroughs – a special grade of GMT material and a patented process to prevent 
crushing of the steel tube during molding – the CCB is fully encapsulated at key junction points on the lower IP carrier.   
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Figures 14 & 15:  It was very important to maintain strong knitlines at junction points between the CCB and the GMT carrier.  
This was accomplished by careful control of process parameters, particularly pressure. 

 

Evaluating the Performance of the Design 
To ensure the safety and effectiveness of the design of the new cockpit and its IP carrier, and make 

certain this system met all cockpit criteria identified in the comparison matrix, the standard battery of 
computer-aided engineering (CAE) simulations and actual molded part testing was performed.  The 
design faired extremely well as can be seen below. 

Airbag Packaging 
The new design allowed safety-packaging rules to be maintained without affecting styling (see 

Figure 16).  Hence, the system is compatible with various airbag deployment loads and with other OEM 
requirements at standard test temperatures.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16:  Packaging of system relative to body-in-white (BIW) and with passenger-side airbag, center stack, and IP topper 
pad in place. 
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Airflow Testing  
The hybrid carrier’s design met all OEM ventilation and defrosting requirements.  Ducting was 

created from the box section formed when the upper IP frame was vibration welded to the lower IP 
carrier. This innovation improved the cockpit’s compactness, but did require co-development of ducting 
and structural functions by a single team. 

Assembly 
The hybrid design successfully passed the manipulator requirement during loading of the cockpit 

into the vehicle.  It provided for a good assembly process using a single cockpit assembly line.  The 
plastics-intensive design facilitated use of smart wire-harness guides. 

Crash Testing 
The integrated cockpit / hybrid IP carrier design met full frontal and offset crash requirements for all 

3 OEMs as well as U.S., European, and Japanese safety standards.  As such, it is the first IP system to 
meet all global safety standards with a single concept.  Figure 17 displays acceleration vs. time curves 
showing results of non-destructive drop testing of the IP at a rate of 1.8 m/s.  Predicted PAM-
CRASH™6 simulations vs. measured values showed good correlation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17:  Predicted simulations vs. actual non-destructive drop testing of IP carrier showing good correlation between the two 

sets of values 
 

Fit & Finish 
This new structure met all required tolerances for the cockpit-gap chart. 

                                                      
6 PAM-CRASH is a trademark of ESI Group. 
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Homologation Requirement  
When subjected to the homologation process, the new design met U.S. Federal Motor Vehicle 

Safety Standard (FMVSS) 208 requirements as well as additional OEM demands for safety.  A careful 
design review / safety inspection found no sharp corners in critical locations that might affect head or 
knee contact (an example of which is shown in Figure 18).  Thanks to early and frequent input from the 
cross-functional team during design characterization, CAE analysis permitted the development of an 
efficient systems solution.  

NVH Analysis  
The hybrid cockpit successfully met the 35-Hz program requirements for body-in-white (BIW) 

frequency when loaded (Figure 19).  It also met an important steering column overhang requirement.  
The reinforced-plastic composite was found to spread stiffness to help avoid the risk of local 
phenomena such as noise/vibration/harshness (NVH) or squeak and rattle issues.  Because of this, the 
design did not need additional felt, which is often added to reduce NVH values. 

Moving from a multi-component, steel design to the hybrid composite/steel carrier was a key 
element to meeting Faurecia’s program goals for its integrated cockpit system. The challenge was to 
create sufficient flexibility in the design so the finished IP could provide a unique appearance for each 
model.  In contrast to a conventional carrier, the new compression-molded GMT composite/steel design 
features a highly complex, 2-piece molding that incorporates the cross-car beam, and integrates the 
functions and fixations for the air ducting, airbag support, steering-column support, and knee bolster.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18:  Early & frequent input from cross-function teams during characterization allowed the design to pass homologation 
inspection. Sharp corners & tight radii were avoided in key locations that might otherwise have affected head or knee impact..   



Page 16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Solid model used for NVH analysis. 
 

The design of the hybrid IP carrier greatly simplifies assembly, improves NVH performance, 
reduces mass 2-3 kg, and – for the first time ever with a single carrier design – meets or exceeds all 
U.S., European, and world safety standards (for full frontal and offset crashes with belted and unbelted 
occupants) – actually improving crash performance in some tests vs. the baseline steel design.  It does 
all this while reducing overall manufacturing costs 12%, and offering high productivity (>6,000 
parts/day) and high repeatability and reproducibility (R&R) on low-cost tooling.   

With a high level of integration, the new hybrid IP carrier offers an optimum balance in terms of 
production volumes, mass, world crash performance, and mechanical properties.  In fact, because the 
same common system can now be used for so many different styles and platforms, tooling costs were 
significantly reduced, as was the cost of analysis and crash testing.   

In fact, because the same common carrier can now be used for so many different styles and 
platforms, tooling costs were significantly reduced, as was the cost of analysis and validation testing vs. 
using multiple designs.  Additional program savings were achieved through clever tooling design, 
where an insert is used so the same tooling can mold IPs for both left- and right-side drive vehicles.  
After the vehicles useful life, the IP carrier can be disassembled and recycled, since it is made of a 
polypropylene/chopped glass fiber composite and the steel beam.   

Throughout the development and evolution of the hybrid carrier and cockpit design, the system’s 
performance was verified in parallel by functional CAE analyses – not just performance requirements 
such as product airflow, but also process analysis and tooling design.  The IP carrier’s structure 
became the core of the complete cockpit development process and also served as a backbone for 
master reference points and the cockpit assembly process during production.   

Finally, the new design passed all required performance tests for all vehicles on this platform.  The 
program was accomplished within the timeframe set for launch. 
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Hybrid Cockpit Summary 
This new hybrid design:  

• Meets or exceeds best-in-class, world-benchmarking standards, 

• Integrates both ventilation and defrosting systems and crash boxes (for cost savings),  

• Allows for flexible airbag fixation (for assembly ease),  

• Prevents intrusion of the HVAC system during a crash,  

• Provides less vibration in the tunnel link (for greater passenger comfort), 

• Uses common tooling with inserts that allow for modification for different designs, e.g. carriers for both left- 
and right-hand drive vehicles can be molded from the same tooling via use of innovative design and a tooling 
insert (for significant tooling-cost and time savings), 

• Reduces testing requirements across multiple platforms, since a common design is used (vs. using multiple 
designs for each platform/model).  

• Locates 90% of the cockpit fixing points and reference system on a single reference part (for greater 
perceived quality, and new and improved functionality). 

 

Acknowledgments 
The authors would like to acknowledge: Volvo Car Corporation, Mazda Motors Corporation, and 

Ford Motor Company for their support on first-generation hybrid cockpit – from advanced engineering 
work in 1996 to C1 platform start of production in 2003.  

References 
1. Almefelt, Lars, Requirement Management in Theory & Practice – From Requirements Formulation to Product 

Concept, Chalmers University of Technology, Department of Product & Production Development, ISSN 1651-
0984, Report No. 15, Göteborg, Sweden (2003). 

2. Jahn, Thomas and Ivan Baudouin, Development of Lightweight, Modular Hybrid-Material Cockpit Structures 
for Passenger Vehicles,” Paper No. 2005-01-1220, 2005 Congress, Society of Automotive Engineers, 
Warrendale, PA (April 2005). 


