A Novel Composite Plate for PEM Fuel Cells

M. H. Abd Elhamid, Rick Blunk, Y. Mikhail, Daniel Lisi General Motors Research Laboratories Global Alternative Propulsion Center Warren, MI 48090

Introduction

- PEM fuel cells produce electricity out of two electrochemical reactions
 - Hydrogen oxidation: $H_2 \rightarrow 2H^+ + 2e^-$ (1)
 - Oxygen reduction: $1/2O_2 + 2H^+ + 2e^- \rightarrow H_2O$ (2)
 - The overall cell reaction is the production of water:

$$H_2 + 1/2O_2 \to H_2O$$
 (3)

 The end product is water and hence has no impact on the environment

What is inside a PEM Fuel Cell?

Current collectors (bipolar plates)

- The main function of the bipolar plate is to collect the current from the catalyst layers and also works as a backbone for the stack.
- Properties
 - > Electrochemically stable in the fuel cell environment.
 - High electrical conductivity
 - Inexpensive
 - Available
 - Machinable into plates that have complex geometries ,i.e., with gas and coolant flow field channels
 - Light weight
 - Not permeable to gases (oxygen and hydrogen)

Materials

Materials

- > Graphite and carbon composites
 - Stable, light, available but sometimes poor mechanical properties and high gas permeability.
 - Major drawback: thick compared to metals
 - > lower kW/liter (problem for automotive)
- Metals
 - > Light, good mechanical properties, zero gas permeability
 - Noble metals : expensive, not available, electrochemical stable (Pt, Au,..etc)
 - Non-nobel metals:
 - > Unstable: corrode in the fuel cell environment (aluminum)
 - Stable: build up oxides and have low corrosion rates (stainless steel, titanium)

Purpose

- Is to investigate the use of stainless steel reinforced graph-foils as alternative bipolar plate materials
 - Graph foils are conductive but permeable to gases and liquids.
 - > Break easily
 - Stainless steel has good mechanical properties at very small thicknesses and can be used to reinforce graph foils, thereby, stiffens the graph foil while eliminating the hydrogen gas permeability.

Experimental

- Plate preparation
 - Stainless steel foil (0.1mm) was cleaned Cathodically to remove the oxide film and to minimize the contact resistance on its surface.
 - > The the stainless steel foil was then coated with a conductive and protective polymeric material.
 - > Two graph foils (2mm thick) were then applied upon the two faces of the stainless steel foil.
 - The assembly was then put under a hot press and the polymeric coating was allowed to cure to bond the graph foils to the stainless steel thin foil.
- Contact resistance measurements, see Fig.1
 - Values for the contact resistance were measured at 200 psi compression pressure and were compared to the values obtained on the graph foil under, otherwise, the same experimental conditions
- > Hydrogen gas permeability was measured using a hydrogen permeation setup hocked to a gas chromatograph..
- Electrochemical measurements were done on the graph foil as well as the new sandwich structure under simulated fuel fuel cells conditions..

Fig. 2 Resistance measurements assembly

Results (Plate Resistance)

 Table 1 Values of the contact resistance obtained on the bare stainless steel foil, the conductive polymer coated stainless, and the new sandwich structure (composite material), before and after the corrosion experiments.

Material	Contact resistance, mohm cm ² @ 200 psi, measured paper - paper	
	before corrosion	after corrosion
Uncoated clean 316L ss	16.5-18	300
Graph foil	11	no change
316Lss coated with the conductive polymeric coating	19-20	no change
Sandwich structure	23.5	no change

Results (Hydrogen Gas Permeation)

 Table 2 Values for the hydrogen permeation rates measured on the stainless steel foil, graph foil and the sandwich structure under simulated fuel cell conditions (25psig, 50 cm² active area, 80°C)

material	Hydrogen permeation rate, cc/min*
Uncoated 316L ss	0
Impregnated ** graph foil	0.24
Sandwich structure	0

*Target <0.01 cc/min

** non impregnated graph foil gives a value of 2.4 cc/min

Results (Electrochemical Stability)

Fig.3 Potentiostatic current transients obtained at $+0.6V^*$ (Ag/AgCl) on coated and uncoated 316Lss samples in an aerated solution of pH=3 (10 ppm HF and 0.5 M Na₂SO₄) and at 80°C.

* +0.6V(Ag/AgCl) =+1.0V NHE

Fig.4 A cyclic voltamogram obtained on the sandwich structure in an aerated solution of pH =3 (10 ppm HF and +0.5 M Na_2SO_4) at a scan rate of 1mV/s and at a 80°C.

Summary and Conclusions

- The new sandwich structure offers the following:
 - Zero gas (hydrogen) permeability
 - Low contact resistance under simulated fuel cell conditions
 - Presumably, good mechanical properties because of the stiffness of the thin stainless steel foil.
 - Good electrochemical stability under simulated fuel cell conditions.