Engineered Structural Composites in Stiffness-critical Fuel Cell Applications

Marc Imbrogno & Brian Hull SPE Automotive Composites Conference September 12-13, 2002

Engineered Structural Composite (ESC) Molding Compounds

- High Levels of Reinforcement: Typically 50 66% by Weight
- Specialty / Exotic Resin Systems
 - Hybrid Vinyl Ester
 - Epoxy
 - Polyimide
- > Unique Combination of Stiffness & Toughness

ESC Materials – Typical Properties

Material	%	Density	Tensile	Tensile	Flexural	Flexural
	Reinfor-	LB/IN ³	Strength	Modulus	Strength	Modulus
	cement		PSI x E3	PSI x E6	PSI x E3	PSI x E6
ESC Materials						
AMC-8590 - Carbon	55%	0.053	36	7.0	80	5.0
QC-8800 - Glass	63%	0.068	50	3.8	85	3.0
<u>SMC</u>						
Polyester - Glass	30%	0.066	12	1.7	26	1.6
<u>Metals</u>						
Al Die Cast		0.098	48	10.4		
Al Wrought		0.098	40	10.4		
Mg Die Cast		0.064	22	6.4		
Steel 1008		0.280	48	30.0		

ESC Application – Fender Support

- > Lightweight
- > High Stiffness
- Design Flexibility
- > Parts Consolidation

ESC Application – Stern Drive

- **Corrosion Resistance**
- > Parts Consolidation
- ≻Impact Resistance

COMPOSITES

Structural Composite Application in Fuel Cells

Fuel Cell Power Plant – Major Systems

Fuel Processor

Power Conditioner

> Power Section

Balance of Plant

ESC Application – Pressure Plates

Function

- Forms Termini of Power Section
- Aids in Aligning and Sealing Individual Cells
- Provides Point of Connection for Fluid Routing
- May Provide Point for Power Take-off

Performance Attributes

- High Flexural Stiffness
- Corrosion Resistance
- Function as Insulator
- Dimensionally Stable

ESC Application – Pressure Plates

Competing Materials

- Cast Stainless Steel or Anodized Aluminum
- Assemblies of Components
 - Machined rigid plate
 - Load distribution bars
 - Springs
- Engineering Thermoplastics

ESC Application – Pressure Plates

Manufacturing Challenges

- Tight Tolerances
- Thick Sections
- Controlling Fiber Volume / Orientation in Molded Part

ESC Advantages

- Design Flexibility / Improved Functionality
- Molded-in Tolerances
- Corrosion Resistant
- Low Creep Characteristics
- Ability to Control Fiber Orientation
- Lower Cost for Endplate Assembly

ESC Corrosion Resistance Data

ESC Creep Performance Data

Development Process for

Structural Composite Applications

QUANTUM COMPOSITES

Goals

- > Reduce Development Time
- > Bring Credibility to Design
- > Reduce Project Risk
- > Optimize Part Design for...
 - Parts Consolidation
 - Total Cost
- Provide "Quick and Low Cost' Testable Prototype Parts

Evaluate Program Targets

Material Requirements

- High Strength / Modulus
- Corrosion Resistance, Potential UL Recognitions, etc.

Performance Targets

- Deflection Requirements at Service Loads / Temperature
- Weight Reduction
- Equal or Improved Functionality

Part Costs

- Vs. Incumbent Design and Current / Potential Material(s)

Piece Price Including Mold Costs

- Number of Molds Required to Meet Production

COMPAREMTM **Design Tool**

> Determines Optimum Design with Optimum Material Choice

> Outputs are ...

- Wall Thickness
- Rib Height
- Cure Time
- Part Costs
- Tonnage
- Press Size

Assemblies with Similar Strength & Stiffness

Review Initial Part Design

- ➤ For ...
 - Moldability
 - Tooling Issues

> Use COMPAREM Results to Finalize Design Direction

Charge & Flow Pattern Analysis

Enables Determination of Proper Charge Placement Required to Achieve Flow and Fiber Orientation

Benefits ...

- Determine Material Volume Needs
- Part Strength
- Shape of Charge
- Go-no-go Decision Point

Production Launch

- > Use Engineered Charge Pattern
- > Obtain Full Parts in 2 3 Shots ... Not Days

Composite Pressure Plate Design Example

Advantages of ESC Materials

- Design Flexibility
- Corrosion Resistance
- > High Strength
- > High Impact Resistance
- > High Strength-to-weight Ratio
- > Low Coefficient of Thermal Expansion
- > Electrical Performance non-conductive
- > Dimensional Accuracy Molded-in Tolerances
- > Improved NVH Characteristics

Conclusions

Commercialization is Imminent

- Various Demo Programs Underway
- Residential / Portable in '02
- Transit Busses in '03
- Automobiles in '04

Many Segments / Niche Applications

- Initial Penetration into Price Insensitive Segments
- Broaden Commercial Scope / Deepen Penetration
- Increased Demand Will Affect Mass Production

Conclusions

Keys for Fuel Cell Manufacturers

- Demonstrate Success Initially
- Validate Efficiency / Reliability
- Drive Costs Down
- Creative Marketing / Business Strategies to Create Volume

Keys for Component Suppliers

- Material Development / Specification
- Design for Manufacture
- Development of High Performance / Low Cost Components
- Collaboration with OEM's / Key Players

