Fiber Filled Materials and New Flexible Design Methodology for Hybrid Front-End Carriers

Padraig Naughton, Jan Roettger, Bill Bowser Samar Teli, Eric Kurtycz, Ashish Kotnis

- Dow Automotive Introduction
- Front-End Carrier: Current Technologies and the new concept from Dow Automotive
- CAE / Prototype Development
- Prototype Testing & Validation
- Benefits of the Bonded Hybrid System

Essex Chemical

Polymer Glass Bonding \$300MM Annually, 400 Employees Captive Assets

Original Dow Automotive

Engineered Thermoplastics \$400MM Annually, 185 Employees Shared Assets

Sound Alliance

JV with Cascade. NVH Products 100MM Annually 100 Employees

> Donnex JV with Donnelly Glass Bonding Technology

Dow Chemical Oxygenated Solvents / Auto Fluids

New Dow Automotive 1st Customer Facing Business Unit of Dow Chemical \$1.6B Annually, 1800 Employees Captive and Shared Assets

Dow Chemical PU Seat and NVH Foam \$300MM Annually, 50 Employees Shared Assets

\$30MM Annually, 20 Employees Shared Assets

Fabricated Products / INTEGRAL* Films \$20MM Annually, 10 Employees Shared Assets

The New Dow Automotive

Dow Automotive Business Model

Front End Carrier Current Technology / Dow Solution

Rub Strip

What is a Front End Module ?

Metal Reinforcement is required for better impact performance

Forces acting on front end carrier

Metal to Plastic - Technological Approaches

- GMT Compression molding
- Metal to plastic attachment via rivets and heat stacks
- Open section in upper box area
- Additional vertical tie for latch stiffness

- PP LGF injection molding
- Metal to plastic bonding via LESA technology
- Closed section in upper box area gives higher stiffness
- Removal of vertical tie with optimized plastic design
- Air duct integration

CAE to Develop the Concept and Aid in Tooling

Materials Science & Characterization (LGF PP)

Why LGF PP ?

Materials Science & Characterization (Adhesive Bonding)

Displacement under latch pull load U, U3 +4.564e+00 +4.174e+00F=2000 N, Max. displacement= 4.5 mm

Original FEC - GMT and Metal

Dow Concept - LGF PP and Metal

Main Requirements

- Stiffness
- Latch pull
- Hood slam
- Vibration
- Tooling

P. Naughton, 23.03.2001 Dow Confidential

Gate location -655,405, 240

MOLDFLOW

Prototype Development

Adhesive Bonding

LESA

Truly differentiated technology that enables the structural bonding of PE, PP, PS, SPS, PET, PTFE with no surface pre-treatment!

- 2 part 1:1 adhesive room temperature cure
- 7 minute open time
- Full cure in 24 hrs
- Creates covalent adhesive polymer grafts
- substrate failure at 110 C
- Viscosity appropriate for robotic application
- Good crack resistance.
- New formulations developed

Cooling Unit

Head Lamps

The Assembled Front End Module

Prototype Testing and Validation

Testing as per OEM specifications

- Hood Contour Run
- Hood Latch Pull Test
- Temperature Test
- Vibration Test
- Climate Test
- Material Test
- Insert Test
- All test completed and passed without major issues

Prototype Testing and Validation

Latch Pull Test Results

Hood Slam:

- Open and close cycles at different temperatures and misuse tests
- No effect to bond-line, cracks or loss of insert torque

Temperature Exposure:

- Four temperatures for specified time
- No effect to bond-line and spit-lines, cracks or loss of insert torque

• Vibration Tests:

- Test with heaviest front end module assembly at specified temperature
- No cracks, no effect to bond-lines

Latch Pull:

- Dynamic load applied at latch pull area in positive Z (upward) direction
- Elastic deformation
- No cracks or damage
- No effect to bond-lines

Climate Tests:

- Climate cycles at different temperatures for specified time periods
- No effect to bond-lines and spitlines, cracks or loss of insert torque

Benefits of the Bonded Hybrid System

Bending and Torsion Studies on Several Hybrid FEC Concepts

3. Bonded closed without ribs (LGF PP)

5. Further Bonded Design Concepts (LGF PP) Mass - 305 gm

Comparing Bending Stiffness Performance

Force at Yielding of Metal and Plastic at 23° and 60° C

Section type	Force @ Yield	Force @Yield	Force @ Yield	Force @ Yield
	23° C (Steel) N	23° C (Plastic) N	60° C (steel) N	60° C (Plastic) N
Over-Molded (1)	1700	2700	1700	2700
Bonded open (2)	1600	2600	1600	2400
Bonded closed w/o ribs (3)	800	2400	700	2400
Bonded closed with ribs (4)	1700	2700	1600	2700
New Design Concept (5)	1900	4300	1800	3800

CAE for Further Development

Comparing Torsional Rigidity Performance Reaction Moment at 1, 2 and 3 degree twists at 23° and 60° C

Section type	Torsional rigidity @ 1,2,3 deg twist	Torsional rigidity @ 1,2,3 deg twist
	N-m (@ 23º C	N-m (@ 60º C
Over-Molded (1)	~ 15, 30, 44	~ 15, 28, 43
Bonded open (2)	~ 10, 18, 25	~ 10, 16, 22
Bonded closed w/o ribs (3)	~ 40, 59, 70	~ 35, 56, 65
Bonded closed with ribs (4)	~ 40, 58, 70	~ 35, 56, 65
New Design Concept (5)	~ 25, 45, 55	~ 22, 40, 52

CAE for Further Development

- Tensile Strength
- Tensile Modulus

120 **68** 85 **MPa** 6700 5628 5500 **MPa**

- Elongation 2.6 1.9 3.5 % •
- Flexural Strength 170 127 85 MPa **MPa**
- Flexural Modulus 5377 5500 6800
- Charpy Impact 55 41 40 kJ/m²

Recylate Properties

Mass reduction

Performance improvement

- Consistent high quality
- Flexibility of design
- Availability of process capabilities
- Materials tuned to optimise system
- CAE capabilities developed

Summary:Benefits and Advantages of the Dow Front-End System

Thank you ! Questions ?

