DEVELOPMENT OF A LONG FIBER REINFORCED COMPOSITE SEAT STRUCTURE FOR MASS TRANSIT APPLICATIONS

Klaus Gleich Southern Research Institute Birmingham, AL Uday Vaidya University of Alabama at Birmingham Birmingham AL





#### **OVERVIEW**

- Component selection
- Requirements
- Design and prototyping
- Results
- Economic analyses

#### **COMPONENT SELECTION**

- Identify potential candidates
- Assess benefits and technical risks
- Select component
- Define requirements
- Preliminary design, fabrication plan, performance and economic analysis

#### **SELECTION CRITERIA**

- Weight savings
- Cost saving
- Selected component should demonstrate the production capability of LFT materials
- Demonstration of low cost prototype tooling

#### **BUMPER BEAM**



# **2 PASSENGER SEAT**



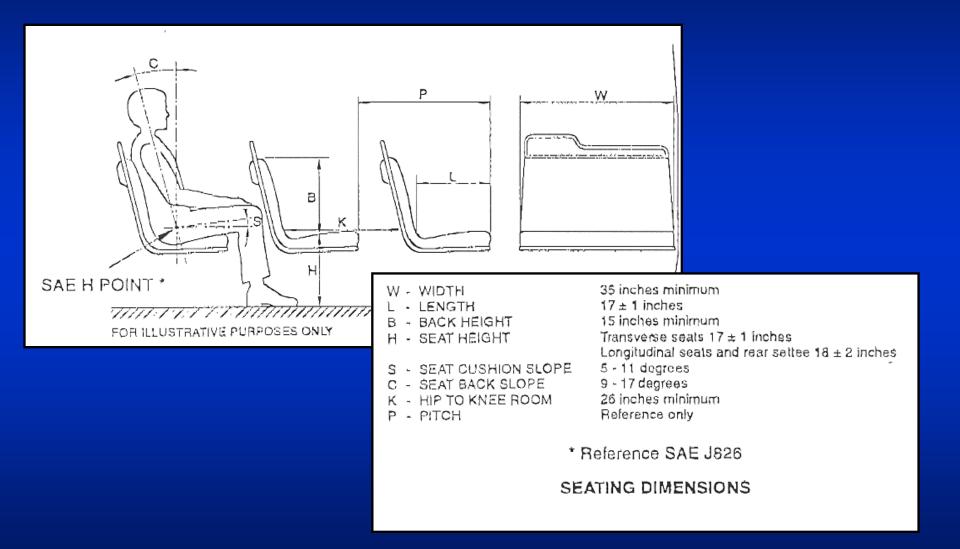


#### **EXPECTED SAVINGS PER BUS**

#### Bumper Beam Seat Structure

#### Cost Savings \$ 564 \$ 2100

Weight 35 lbs. 238 lbs. Savings


# **REQUIREMENTS FOR SEAT**

- Mechanical requirements (static and dynamic)
- Flame, smoke and toxicity
- Service and maintenance
  - Durability
  - Low gas consumption
  - Easy to service
  - Easy to clean
- Esthetic
  - Surface quality
  - Design

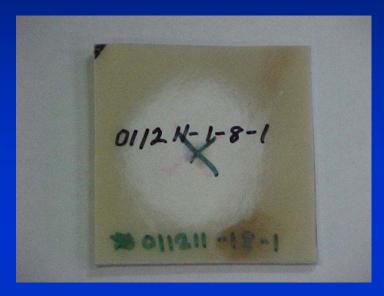
#### **MECHANICAL REQUIREMENTS**

- The basic seat dimension was chosen were based upon 'Standard Bus Procurement Guideline', Reference SAE J 826.
- The seat assembly shall withstand static vertical forces of 500 pounds applied to the top of the seat cushion in each seating position with less that <sup>1</sup>/<sub>4</sub> inch-permanent deformation in the seat or its mountings.
- The seat assembly shall withstand static horizontal forces of 500 pounds evenly distributed along the top of the seat back with less that <sup>1</sup>/<sub>4</sub>-inch permanent deformation in the seat or its mountings.

#### **DESIGN GUIDELINES**



#### **FLAME RETARDANTS**


- 2 basic concepts:
- Flame retardant compounded with the polymer
  - Will influence mechanical properties, especially impact behavior
- Flame retardant as a top coat
  - Scratch resistance and adhesion to basic material of importance

#### **USED FLAME RETARDANTS**

- Additives:
  - 2 additives were tested
    - 1 for polypropylene, non-halogenated
    - 1 for nylon
- Coatings:

- 2 different coatings were selected and tested

# **INFLUENCE OF FLAME RETARDANT ON A PP/GLASS FIBER COMPOSITE**



LFT PPGF 40 without flame retardant



LFT PPGF40 with 5% flame retardant

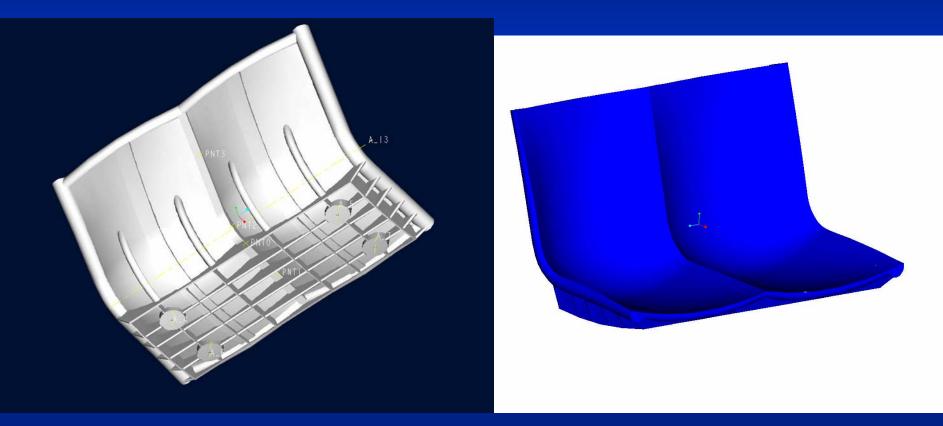
- 5% of flame retardant reduced the Dynatup impact by appr. 10%
- Impact behavior changed
- Only a non-significant improve in reduction of flammability could be found

# **RESULTS WITH TOP COATS**

- Samples were coated and tested
- Both coatings showed reduction of flame spread and smoke density in preliminary testing
- The top coat which showed better results were selected
- Samples with flame seal FX-PL were sent to an independent test lab

# **TEST RESULTS**

| Test Performed                      | Test Result | Test Requirement           |
|-------------------------------------|-------------|----------------------------|
| Flame Spread, Is<br>(ASTM E 162-95) | 3.01        | Is < 35                    |
| Smoke Density<br>(ASTM E 662-95)    |             |                            |
| Flaming mode, Ds(1.5), Ds(4)        | 0.19, 0.96  | Ds(1.5) < 100, Ds(4) < 200 |
| Non-flaming mode, Ds(1.5), Ds(4)    | 0.29, 1.26  | Ds(1.5) < 100, Ds(4) < 200 |


#### **COMPONENT MANUFACTURING**

- Component design and analyses
- Process simulation
- Fabrication planning
- Manufacturing of prototypes

# **INTEGRATION OF FRAME AND SEAT BODY CONCEPTS**



# DESIGN & MODELING OF LFT BUS SEAT





Possible weight savings

The total weight of the seat, supports and the frame : 47 lbs (21 kgs).

Weight of the bare seat and frame : 39 lbs (17 kgs).

Steel frame from the existing seat : 14 lbs (6.35 kgs) and the cantilever support : 6 lb (2.72 kgs).

Weight of the seat (based on the model) : 22 lbs (10 kgs)

Weight reduction : 39 - 22 / 39 = 43.5% (conservative)

# TOOLING CONCEPT FOR BUS SEAT

- Master part will be machined from the CAD-data
- Aluminum filled epoxy will be cast around master part
- Cooling/heating lines will be included during the casting
- Epoxy tool will be inserted in a metal frame with all guidance

# TOOLING THE MASTER PART









#### CASTING









# **TOOL AFTER CURING**

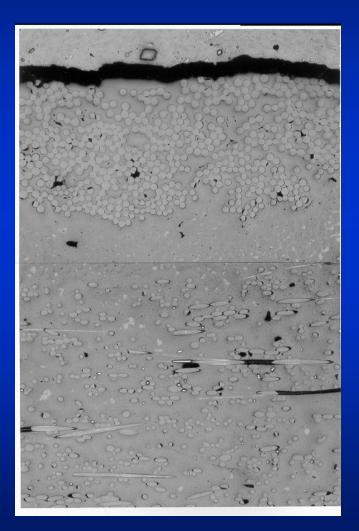




# TOOL UNDER 2000 TON PRESS



#### MANUFACTURING CONCEPT


- Compression molding with LFT-pellets
- Compression back molding of carbon-fiber reinforced inserts with long glass fiber reinforced pellets
  - Insert will be preheated (if necessary) in an oven and placed in the tool immediately before the compression molding step
- Geometry of plasticated material as a result of flow simulation

#### **PROCESSING OF INSERTS**

PP/fiber tapes back molded with LFT

- Insert at tool side ⇒ LFT will not melt the insert enough to get good bonding
- Insert at top of the LFT charge  $\Rightarrow$  good bonding
- ⇒ Insert should be preheated directly before processing

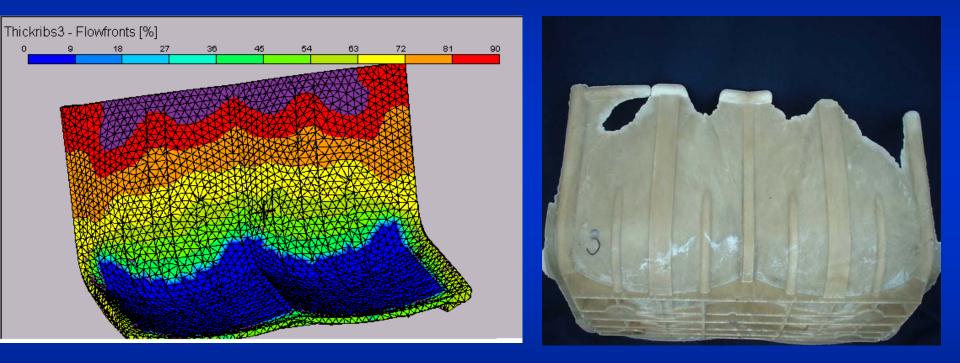
#### **PROCESSING OF INSERTS**



Fibers of the inserted tape, cut against fiber direction

PP rich area

LFT, random fiber orientation


# **SEAT TOOL WITH INSERTS**



#### **COMPONENT EVALUATION**

- Evaluate quality, uniformity and molding characteristics
  - Mold filling characteristics, fiber orientation and fiber distribution
- Compare performance data with model / requirements
- Economic analyses

# **COMPARISON OF FILLING BEHAVIOR AND FLOW SIMULATION**



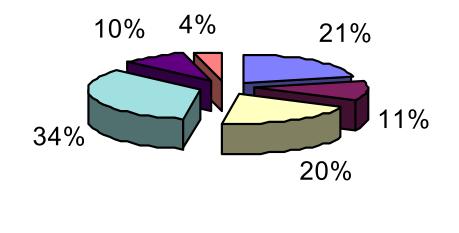
Result of flow simulation

Short shot shows filling behavior

### **TEST FIXTURE WITH SEAT**

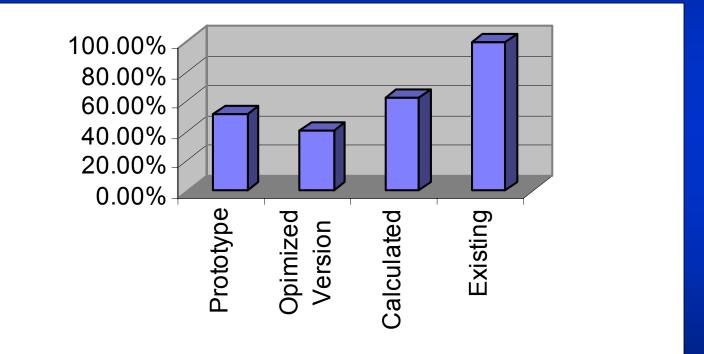


#### **RESULTS**


- 227 kg applied to the top of the seat cushion on each seat (total 454kg / 500 lbs.)
- 454 kg (500 lbs.) applied as a line load to the seat back
- in both cases no notable permanent deflection ⇒ the 6.35 mm (1/4") permanent deflection criteria is fulfilled

### **POSSIBLE CHANGES**

- Reduce material amount in outside frame and ribs by using
  - Slides
  - Gas assist compression molding
  - Automated fixing of inserts or replace inserts by a material mix
  - → Reduce weight by additional approx. 20%
    Reduce cycle time (target: 60 90 sec. total)


# ECONOMIC ANALYSES -SUMMARY

#### **Production Costs as Prototyped**



- material
- manufacturing
- □ flame coat and painting
- mounting bracket
- overhead
- tooling

### ECONOMIC ANALYSES -SUMMARY



#### **TECHNOLOGY TRANSFER**

- Discussion with bus seat manufacturers for transfer seat structure into production.
- Final bus seat will be assembled in a bus for Altoona-test (Penn State Univ.)
- Technology can be transferred easily to other components

#### **SUMMARY**

- An all composite 2-Passenger Bus Seat was designed and analyzed.
- Prototypes were manufactured.
- Molding operation was simulated and successfully compared to manufacturing.
- Seat fulfilled the requirements including flammability and smoke density.
- A 40% weight reduction and a 50% cost reduction could be achieved.

#### ACKNOWLEDGEMENTS

The authors wish to express their appreciation to the **Federal Transit Administration** for the support of this work.

> Continental Structural Plastics for help in compression molding the prototypes Vantico for assistance with epoxy tooling

#### THE TEAM











- FTA Program Management & Oversight, Technical Guidance
- SRI Project Management, Materials Technology, Fabrication Technology, Component Fabrication
- UAB Process Modeling, Component Design & Analysis, Composite Mechanics
- Lawton Extrusion/plasticator Equipment, Tooling Technology, Fabricate Tools.
- NABI Component Selection, Requirements Evaluation