Sandwich Construction for Public Transportation

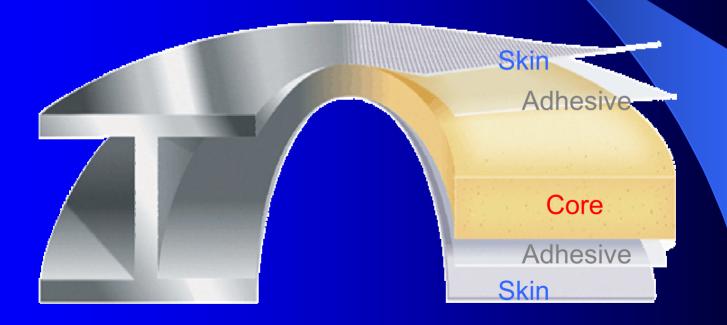
Troy, MI September 12-13, 2002

Traditional Materials and Construction

Steel, Aluminum, Plywood, and other traditional materials dominate.

History Known Processes Materials design data base and knowledge Known costs Consumer acceptance

Traditional Materials and Construction


Some major issues changing thought:

Clean Air Act and other government policies Energy Costs Need for more efficient public transport systems New materials and processes improved Six strong arguments for composite sandwich construction for transportation applications:

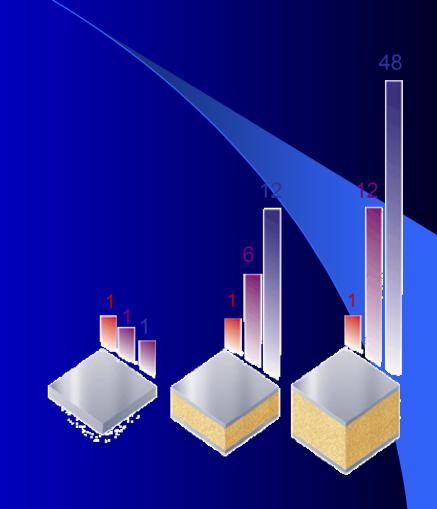
Optimized low weight
Freedom of design
Comfort
Safety
Maintenance
Environmental Impact

What is a Sandwich?

Sandwich Components

Definition of a TRUE Sandwich

Thickness of core is much greater than the thickness of the skins



Not a Sandwich

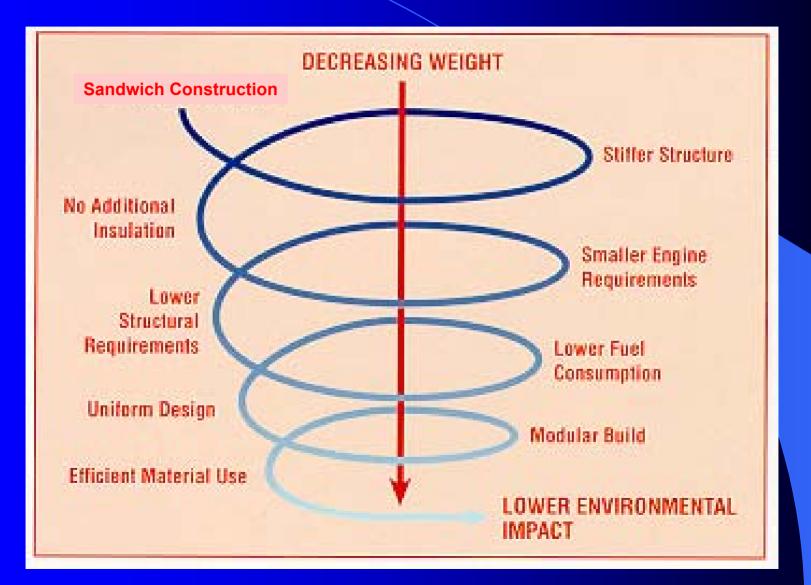
Why Sandwich over Solid?

- Weight
- Strength
- Stiffness
- Labor
- Insulation

Less plies to laminate

Less stiffeners or framework to install

Optimized low weight


Why is reduced weight so important?

Increased payload
Faster acceleration
Lower energy consumption
Lower noise
Increased ease during fabrication

Conclusion:

Lower total Life Cycle Cost. Increased Profits.

Optimized low weight

Optimized low weight

Life Cycle Cost

ãPurchase price
ãDocumentation
ãOperational
ãEnergy consumption

ãSpare parts
ãRepair
ãMaintenance
ãScrapping

Case:

\$12,700/ton saved during the lifetime for a train (25 years) using sandwich construction.

Freedom of design

Skin Materials Core Materials Adhesives and Joining Construction Processes

Key Properties of Skin Materials

- High Tensile Modulus
- High Compression Modulus
- Tensile Strength
- Compression Strength
- Interlaminar Shear Strength
- Bondability
- Adequate Toughness

- Temperature Resistant
- Moisture Resistance
- Adequate solvent resistance
- Adequate Peel Strength
- Adequate Fatigue Life

Typical Skin Materials

Metallic

Aluminum
Steel

Wood

Plywood
Veneer

• FRP

– Carbon

Aramid

– Glass

Hybrids

Key Properties of Sandwich Cores

- High Shear Modulus
- High Compression Modulus
- Shear Strength
- Compression Strength
- Tensile Strength
- Bondability
- Adequate Shear Strain

- Non-Friable
- Temperature Resistant
- Moisture Resistance
- Impact Resiliency
- Adequate solvent resistance
- Adequate Peel Strength
- Adequate Fatigue Life

Typical Sandwich Cores

Honeycomb Motollio

- Metallic
- Plastic
- Wood
 - End-grain balsa

- Cellular Plastic
 - Polyvinyl Chloride (PVC) Foam
 - cross-linked (rigid)
 - Linear (semi-rigid)
 - Polyurethane (PUR)Foam
 - Styrene Acrilonitrile (SAN) Foam
 - PMI Foam

Key Properties of Adhesive Materials

- Tensile Strength Greater than Core
- Shear Strength
- Bondability
- Adequate Toughness
- Good Wet-Out of core and skin

- Temperature Resistance
- Moisture Resistance
- Adequate solvent resistance
- Adequate Peel Strength
- Adequate Fatigue Life

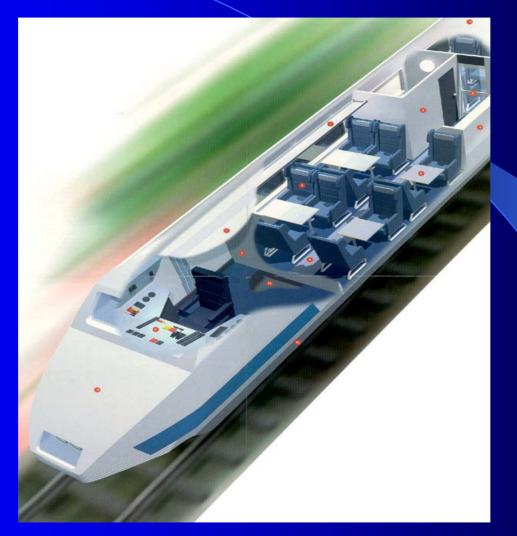
Typical Adhesive Materials

- EpoxyUrethane
- Urethane Acrylates
- Polyester
- Vinylester
- Phenolic

Construction Processes

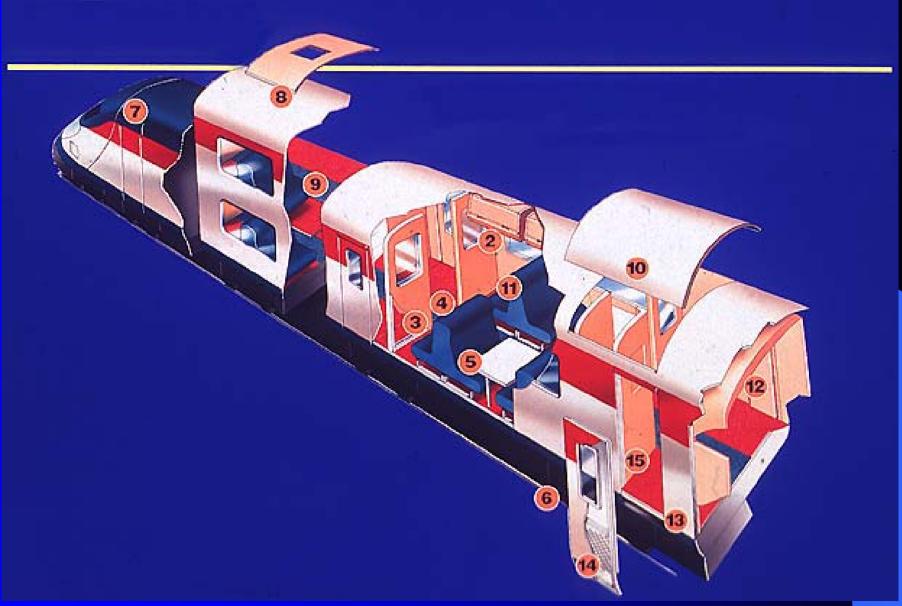
- VARTM / Infusion / SCRIMP
- Pre-Impregnated Fibers (pre-preg)
- Wet lay-up
- Pultrusion
- Filament Winding
- RTM

Construction Processes


VARTM / Infusion / SCRIMP

- Large structures
- Reduced part count
- Consistent and good quality
- Controlled costs

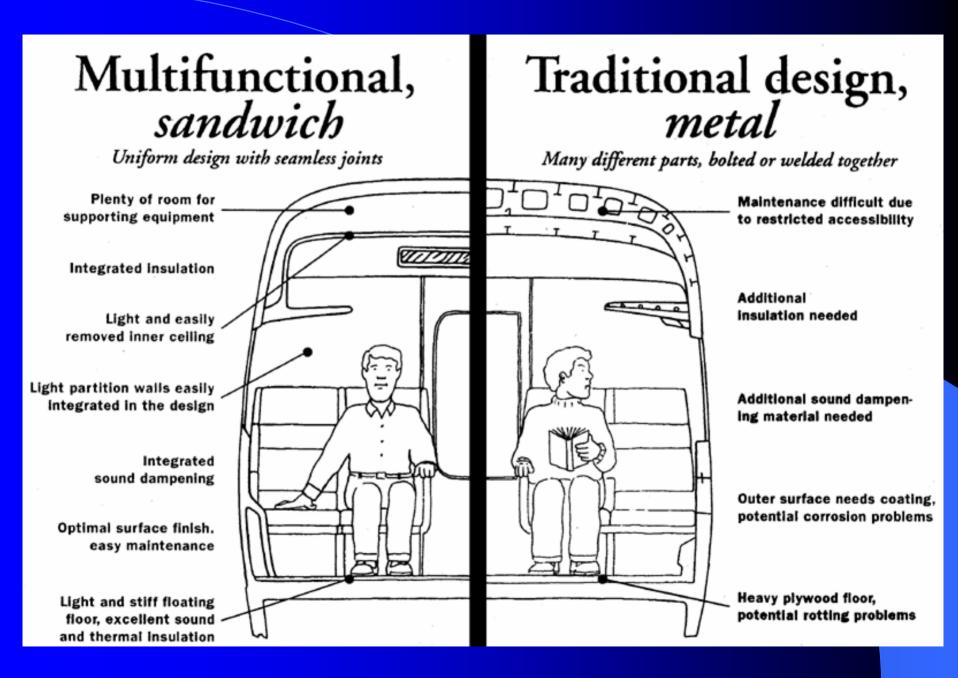
Core Processing Matrix


	Room Temp	Pre-Preg (Celsius)							
Core	Wet Lay-up	60	120	148+	Vacuum	Autoclave	VRTM	Thermoform	RTM
Rigid PVC	Yes	Yes	Yes**	No*	Yes	Yes*	Yes	Yes	Yes
Ductile PVC	Yes	No	No	No	Yes	No	Yes*	Yes	Yes*
SAN	Yes	Yes	Yes	No*	Yes	Yes*	Yes	Yes	Yes
PMI	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Polyurethane	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No**	Yes
Honeycomb	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No
Balsa	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
* I had an a autor lle									
* Under controlled temperature, time, and pressure, using ramp-ups.									
** Special Grade									

Freedom of design

Endless Possibilities!

Freedom of design



Comfort

Multifunctional - Sandwich Uniform design with seamless joints

Integrated insulation
Integrated sound dampening
Optimal surface finish, easy maintenance
No rot light panels
Easy maintenance moving and replacing panels. Traditional Design - Metal Many different parts, bolted or welded together

 Additional insulation needed Additional sound dampening material needed Outer surface needs coating, potential corrosion problems Potential rotting on heavy plywood floors.

•Fire, Smoke, and Toxicity Properties.

Crash / Energy Absorption Properties.

Oxygen Index

Oxygen index is the minimum percentage of oxygen required in the surrounding air to sustain a fire. Normally, there is 21% oxygen in air. Materials that have an oxygen index greater than 21 are said to be self-extinguishing.

Heat Release and Heat Release Rate

Heat Release (HR) is a measure of the energy released from a material when it is burned. The Heat Release Rate (HRR) is the rate at which energy is released during the test – of particular interest is the Peak Rate. The HR and HRR can be measured using equipment such as an OSU test chamber, developed by Ohio State University.

Smoke Generation

There are various pieces of equipment to measure smoke generation from burning materials. Two examples are the NBS (National Bureau of Standards) and the OSU (Ohio State University) smoke chambers.

Toxicity

Burning and combustion not only release heat, they also produce residual products such as char and smoke. Standards have been established to dictate the types and quantities of combustion products allowed for certain materials.

<u>NF F 16-101</u>

NF F 16-101 is a French standard for railway rolling stock, fire behavior and choice of materials. The materials are classified with respect to fire behavior and smoke index. Fire behavior has five classes, MO - M4, were M0 is the highest. Smoke index is a combination of smoke density and toxicity. It also has five classes, FO - F5, were F0 is the highest.

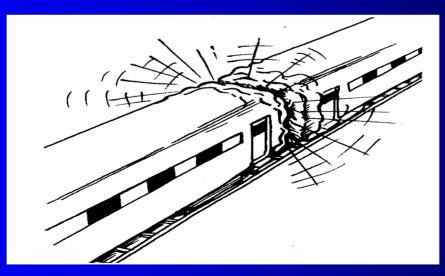
DIN 5510, Part 2

DIN 5510, Part 2 is a German standard for preventive fire protection in railway vehicles. The materials are tested and classified with respect to flammability, smoke development and dripping. Flammability includes burn length and burn time after test and is classified S1-S5, were S5 is the highest. There are two classes for smoke development and dripping, SR1/SR2 and ST1/ST2, were SR2 and ST2 are the highest.

NFPA (National Fire Protection Association)

NFPA 130 Standard for Fixed Guideway Transit Systems is an American set of rules for Trains, and Subway used in the USA using ASTM E162 and ASTM E662 for Flammability and Smoke Emissions.

Incorrect Energy Absorption


Conventional vehicles from steel have too low energy absorption.

Correct Energy Absorption

Vehicles made with sandwich construction technology using crash zones result in better deceleration rates.

Impact/Damage Resistance

Increased puncture resistance

- Core dissipates impact energy reducing damage to inner skin
- Larger panel size dissipates impact energy

Easy repair
No corrosion (metal free parts)
No rotting (wood free parts)
Long lifetime (structural parts)

Environmental Impact

LCA - Life Cycle Assessment

 Sandwich design offering weight savings and a stiffer structure are the keys to a favorable LCA.

•Easier and faster building (reduced labor).

 A multifunctional sandwich decreases the need for other construction materials. **Environmental Impact**

Reduced Emissions:

Vehicles are 30% of world's emissions Need to reduce emissions Need to reduce weight Use new solutions Sandwich Technology

Track Record

Sandwich Technology is well proven all over the world.

Wide acceptance in assorted transportation applications - high speed trains, city buses, trams, etc.

Applications range from roof to skirts, from nose cover to whole coach bodies.

Disadvantages

Material Cost

- potentially offset by labor savings
- Learning Curve
 - Employees/Teams must be trained to properly construct and repair sandwich structures
 - Materials and process knowledge and confidence
 - Life Cycle Assessment implementation

Can U.S. Public Transport

METRO Magazine

April 2000

Why everyone wants lighter vehicles, but couldn't have them in the U.S.—until now. First of two-part series.

Mode	Factors Driving Lighter Weight	Key Strategies	Key Barriers
Motorcoach	 Operating Costs Styling 	 Composites, aluminum in bodies, components Multiplexing Wiring 	 High Capital Costs Price Competition Cheap Used Coaches
Transit Bus	 Operating Costs FHWA Weight Limits 	 Composites, aluminum in bodies, components Multiplexing wiring Future: total redesigns 	 Higher initial purchase price Slow market acceptance of life- cycle costing
Passenger rail	 Operating costs Infrastructure costs Styling 	 Composites, aluminum in bodies Modular vehicle platforms 	 Buff strength requirements (though changing) Slow market acceptance of new technology

One Common Motive w/Composites: Reduce Operating Costs

ATTB – Foam Core Sandwich Composite

Amtrak Acela – Honeycomb and Balsa Sandwich Composites

NABI Compobus – Balsa Sandwich Composite

Bombardier Talent Foam and Hoenycomb Sandwich Composite

Probet

DB

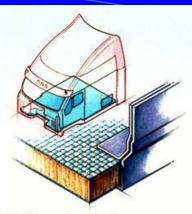
Alstom Hanover Tram – Foam Sandwich Composite

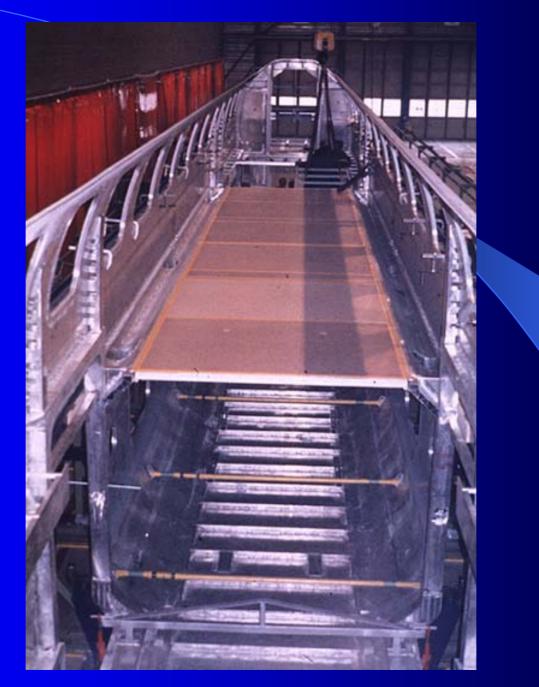
Adtranz Itino – Foam and Honeycomb Sandwich Composite

Alstom Citadis – Foam Sandwich Composite

Alstom Lirex Foam and Honeycomb Sandwich Composite

618 001-2





The ThermaCore floor is completely level and constructed of durable yet lightweight, material that insulates against sound and heat loss for a more comfortable living environment. 000

Closing Comments

Concept of sandwich construction for public transportation applications proven successful.

Large opportunity for the growth of sandwich composites in public transportation, but it will take time.

- Understand the application and needs \rightarrow Select the appropriate sandwich solution.

Consult experts in both materials and processing.

Thank you!

Alex Gutierrez Business Development Manager DIAB Inc. 315 Seahawk Drive, DeSoto, TX 75115 Web Site: www.diabgroup.com E-mail: alex.gutierrez@diabgroup.com Tel: (972) 228-7600 Fax: (972) 228-2667