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Abstract  
 

 The 2003 Dodge Viper Convertible makes the first automotive use of carbon fiber sheet molded composite 
(CFSMC) in nine components to provide structural performance and to achieve significant weight savings.  Right 
and left fender support systems employ a total of six carbon fiber composite moldings.  In addition, carbon fibers are 
used to provide selective stiffening to the windshield surround and door inner structures, which consist primarily of 
conventional glass fiber SMC (GFSMC).  The design and analysis, materials and process, and performance of these 
innovative composite structures are discussed. 
 
 

Introduction 
 
 The primary objective of DaimlerChrysler Performance Vehicle Operations for the development of the all new 
2003 Dodge Viper Convertible was maximizing vehicle performance while maintaining low vehicle mass.  An 
important consideration in the vehicle design was the judicious application of new technologies that potentially can 
be extended to higher volume car and truck lines.  Consequently, the new Viper makes innovative use of 
compression molded carbon fiber SMC in several break-through body structure applications.  A total of eight 
kilograms of carbon fiber composite is used in nine body components.   
 
 Where as previous automotive body applications of carbon fiber composite use processes capable of very small 
volumes (under 1000/year), the 2003 Viper employs a process capable of higher volume production 
(100,000+/year).  Compression molded SMC also allows much greater design flexibility than previous automotive 
applications of carbon fiber (i.e. hand lay-up, vacuum-bag composites). 
 
 While carbon fiber SMCs have been commercially available for 16 years, the application of these materials in 
the automotive industry have been slow to develop due to the high cost of carbon fibers, and the lack of 
understanding of carbon fiber composites.  Recent developments at carbon fiber supplier companies have reduced 
costs and hold promise for further price reductions (1).  In addition, programs under the sponsorship of the U.S. 
Department of Energy are exploring methods to fundamentally change the production of carbon fibers to reduce 
their cost (2).  Work within the Automotive Composites Consortium and studies at the Oak Ridge National 
Laboratory are providing a better understanding of the performance and durability characteristics of commercial 
grade composites containing carbon fibers (3,4).  All of these efforts are increasing the feasibility of using carbon 
fiber composites in the automotive industry.  
 
 This paper presents the three Viper structural systems  that employ the high modulus of carbon fiber SMC to 
achieve exceptional stiffness in lightweight structures.  Thin-wall sections in the six-piece fender support system 
provide numerous functions at a minimum weight.  The hybridization of random CFSMC with low-density glass 
SMC improves the stiffness of structural inner panels to minimize door sag.  And the blending of SMC containing 
continuous oriented carbon fibers with high glass content structural SMC in the windshield surround provides 
stiffness to resist deflections. 
 
 



Figure 1.  2003 Viper with Carbon Fiber SMC Components 
 

 
 

Carbon Fiber SMC 
 
 Carbon fiber SMC is compounded and molded in a manner similar to conventional structural-grade glass fiber 
SMC.  The Viper parts use two CFSMC materials produced by Quantum Composites, Bay City, MI.  AMC™-8590 is a 
toughened vinyl ester resin with 25 mm random chopped 12K PAN based carbon fiber tows.  AMC-8595 contains a 
continuous, unidirectional cross-stitched mat with the same 12K carbon fibers and the same toughened vinyl ester matrix 
as AMC-8590.  
 
 All of the Viper components containing AMC-8590 and AMC-8595 are compression molded by Meridian 
Automotive Systems in Shelbyville, IN.  CFSMC cures at conventional temperatures (145-155°C) and cure times 
(1-3 minutes).  AMC-8590 requires 70%-90% of the mold be covered with the charge to minimize flow lines.  
AMC-8595 does not flow in the fiber direction.  Consistent charge preparation and placement are critical to the 
structural performance of the molded part. 
 
The primary advantages of carbon fibers in SMC are higher modulus and lower specific gravity relative to glass fibers.  
The modulus of commercial-grade carbon fibers is approximately 230 GPa, which is more than three times higher than 
E-glass fibers.  In addition, the 1.8 specific gravity of carbon fibers is about 70% of the specific gravity of glass fibers.  
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These fiber properties translate into thinner and lighter composite structures.  Properties of the Quantum Composites 
CFSMCs are presented in Tables 1 and 2.  
 
Table 1.  Properties of Quantum Composites AMC-8590 (Random chopped carbon fibers) 
 

Property Method 
Net Shape 

Molded 
Specimensa 

Specimens Cut 
From Panel, 

Machine 
Direction 

Specimens Cut 
From Panel, 

Cross-Machine 
Direction 

Fiber Content (% by weight)  Solvent Wash 55% 
Specific Gravity  ISO 1183 1.48 
Tensile Strength (MPa) ISO 527   212 134 
  ASTM D 638 287     
Tensile Modulus (GPa) ISO 527   42.2 32.5 
  ASTM D 638 55.0     
Poisson' Ratio ISO 527   0.322 0.406 
  ASTM D 638 0.457     
Flexural Strength (MPa) ISO 178   502 413 
  ASTM D 790 608     
Flexural Modulus (GPa) ISO 178   29.2 22.7 
  ASTM D 790 39.2     
Notched Izod Impact (J/m) ISO 180/1A   1127 1007 
  ASTM D 256 1304     

CTLE (mm/mm/°C) ASTM D 696   6.17 x 10-6 5.54 x 10-6 
Heat Deflection Temp. @ 1.80 
MPa Stress (°C) ISO 75 >260 

   a – Molding induces fiber orientation in the specimen direction and cuts fewer fibers.  
 
 
Table 2.  Properties of Quantum Composites AMC-8595 (Continuous oriented carbon fibers) 
 

Property Method 

Specimens Cut 
From Panel, 

Machine/ 
Fiber Direction 

Fiber Content (% by weight) Solvent Wash 55 
Specific Gravity  ISO 1183 1.49 
Tensile Strength (MPa) ASTM D 3039 1200 
Tensile Modulus (GPa) ASTM D 3039 120 
Poisson' Ratio ASTM D 3039 0.331 
Flexural Strength (MPa) ISO 178 1270 
Flexural Modulus (GPa) ISO 178 74.4 
Notched Izod Impact (J/m) ISO 180/1A 1440 

CTLE (mm/mm/°C) ASTM D 696 9.47 x 10-7 
Heat Deflection Temp. @ 1.80 MPa 
Stress (°C) 

ISO 75 >260 

 
AMC™ is a Trademark of Quantum Composites, Inc. 
 



Windshield Surround 
 
Evolution of the Composite Windshield Surround 

The new 2003 Viper uses a composite windshield surround as was introduced on the original Viper and the 
Plymouth Prowler.  The design incorporated by the new Viper represents a further step forward in the evolution of 
the composite windshield surround.  Composites were chosen for this application because of the lower tooling cost 
and part consolidation benefits. 

 
The 1992 Viper used RTM composite technology on the windshield surround.  The design included random 

glass pre-forms wrapped around a foam inner core with steel reinforcements and molded in a single cavity.  This 
process required extensive hand finishing particularly around the eight parting line edges of the part.   

 
The 1997 Prowler used a new patented application for the windshield surround.  The Prowler design consisted 

of a two-piece glass SMC surround bonded together with structural adhesive.  The bond seam required hand 
finishing on four edges of the part.  SMC offered greater design flexibility and part consistency than RTM.  The 
Prowler surround used unidirectional glass SMC in the A-Pillars to maximize stiffness and was able to achieve a 9% 
improvement in bench stiffness compared to the outgoing Viper. 
 
 The 2003 Viper adopts a Prowler-type windshield surround because of its design advantages.  The new car also 
further refines the two-piece SMC design by limiting the hand finishing to only one edge (rear header) of the part 
and increasing part stiffness. 
 
Figure 2. Windshield Surround Components and Materials 
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Need for Improved Stiffness 
 The styling on the 2003 Viper angles the windshield further back and increases the A-Pillar length to 610mm; 
nearly 25% longer than the Prowler and original Viper (495mm and 490mm respectively). The new federally 
mandated head impact requirement drove the addition of energy absorbing A-Pillar trim covers on the interior.  This 
decreased the cross-section area for added stiffness.  In order to achieve the performance objectives the engineering 
team turned to carbon fiber SMC. 
 
 Each windshield surround contains 0.92 kg of unidirectional carbon fiber SMC.  The unidirectional fibers are 
oriented along the length of the A-Pillars in both the inner and outer panels.  The fibers are layered in the section to 
maximize stiffness and minimize appearance effects.  The total weight of the surround is 8.9 kg. 
 
Figure 3. Windshield Surround Cross Section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance Results  
 The 2003 Viper windshield surround has 45% less bench test deflection than the original model.  Factoring in 
the longer A-Pillar, this is a 122% increase in normalized stiffness. 
 

Door Inner Panel 
Challenges of a Viper Door 
 A styling trademark on Viper is  the large “gill” opening on the body side just behind the front wheels.  This gill 
opening creates an unconventional door cut-line that limits the hinge pillar surface to nearly half the height of the 
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door.  This in turn increases the moment load on the hinges and the front section of the door inner.  The original 
Viper and the 2003 model both use only a single hinge per door. 
 
 The original Viper doors were constructed of RTM outer and inner.  The original doors used large steel panels 
on the hinge pillar and latch pillar for strength and stiffness.  The intention for the new car was to decrease the cost, 
complexity and weight of the doors by using Class A SMC, low density SMC and smaller steel reinforcements.  
However, further enhancements were needed to meet all of the performance objectives. 
 
Critical Performance Requirements  
 During the development of the door the critical performance criteria were door sag deflection and permanent 
set.  Door sag is the maximum deflection measured on a door in the open position with a specified load applied.  
Permanent set is the deflection measured after the door sag load is removed.  A new technique of blending random 
carbon fiber SMC and glass fiber SMC was developed to improve the performance of the door in these two areas 
without increasing the size of the steel reinforcements. 
 
Figure 4: Door Component Materials 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hybrid Blending of CFSMC and GFSMC 
 The door inner design called for blending carbon and glass materials to maximize on stiffness in the high strain 
energy areas at a minimum cost.  The front portion of the door (20%) would be made up entirely of carbon fiber 
SMC and the rear portion of the door (80%) would be made up of low density SMC containing glass fibers.  This 
hybrid blending in the door presented a more difficult challenge than the windshield surround.  The windshield 
surround glass fiber materials complete enveloped the reinforcing carbon fibers.  In the case of the door panel, a 
transition from the CFSMC to the GFSMC is required in the plane of the part.  A study of different blending 
techniques was performed to determine the optimum joint for molding these two materials together.  The strength, 
dimensional accuracy and processability of the joint were the main considerations. 
 
 This study focused primarily on two methods of blending equal volumes of carbon fiber SMC with low-density 
glass fiber SMC to form a molded “joint.”  In the first, the GFSMC and the CFSMC are overlapped in the mold 
charge by either 25 mm or by 50 mm.  In the second, GFSMC is inserted by either 25 mm or 50 mm into the two ply 
stack of the CFSMC.  Plaques containing only carbon fiber SMC or glass fiber SMC were molded as controls.  The 
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charge patterns, covering 55% to 70% of the 305 mm x 305 mm mold, were molded into uniform 2.5 mm thick 
panels.  Flow of the SMCs generally caused the transition zones to double in length.  In cross-section the molded 
overlap joint appeared to approximate a single scarf joint, where as the insert joint approximated a double scarf 
joint.  Straight edged tensile bars measuring 25 mm x 305 mm were cut with a diamond tipped blade and tested in 
general accordance to SAE J2253 / ASTM D5083. 
 
 
Figure 5: Hybrid Transition Joints 
 
 
 
 
 
 
 
 
 
 
  

A summary of tensile strength data is presented in Figure 6.  Error brackets around the means represent plus and 
minus one standard deviation.  Six specimens were tested at each condition.  It is evident that the strength and the 
variation are much greater for the carbon fiber SMC than for the glass fiber SMC.  The coefficients of variation are 
23.2% and 6.1%, respectively.  The strengths of the four different configurations are all statistically equivalent to the 
strength of the glass fiber SMC.  Thus, it appears that stress concentration caused by the interface between the two 
dissimilar materials is not reducing the tensile strength below that of the glass fiber SMC.  However, it was noted 
that most fractures occurred at one or both surfaces where the two different SMCs interfaced.  
 
 While strength did not differentiate the two types of joints, it became evident from visual examination of the 
panels that out-of-plane distortions were different.  Individual panels were fixed along one edge and the deviation of 
the opposite two corners was measured.  This revealed that the asymmetric joint, the overlap, resulted in nearly a 
four-fold greater deviation from plaque planarity than the symmetric “insert” joint.  Results of this study were used 
in the design of the charge pattern for the door inner panels. 
 
Figure 6: CFSMC / GFSMC Hybrid Transition Study Results 
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Performance Results  
 The final construction of the door yielded a 206% improvement in door sag stiffness and a 350% improvement 
in resistance to permanent sag deflection.  Reducing the size of the steel reinforcements gave a weight savings of 
approximately 3 kg. 
 
 

Fender Support System 
 
Design Concept 
 The front-end of the original Viper was made up of a one-piece clamshell hood.  With a multiple piece inner 
panel, excessive hand finishing, and its massive size, the hood was a very difficult part to manufacture.  The styling 
of the 2003 Viper would offer the advantage of a traditional hood and fenders, keeping however the same space-
frame chassis architecture.  Many different options were considered to attach the new hood and fenders to the Viper 
space-frame including local stamped brackets, tubular metal reinforcements and fender inner panels.  The 
engineering team decided to investigate new materials and a new concept for supporting the front end of the vehicle. 
 
 Carbon fiber SMC was ultimately chosen as the material for the new front-end fender support system.  This 
process and material gave the design team great flexibility in consolidating brackets and increasing the function of 
the system.  The initial design intent was to create one left and one right molded panels that would support the 
fender, the headlamps, and provide the dimensional reference for the entire front end of the Viper body.  The design 
evolved into three molded panels per side: a fender support; a headlamp support; and a sill to fender bracket.  Each 
of these panels would be molded out of carbon fiber SMC.  The panel break up was driven by two main factors: 1. 
Minimize complexity of the molding tools; 2. Provide serviceability of the appendage portions of the system (the 
headlamp supports and the sill to fender brackets). 
 
Figure 7. Fender Support System Components 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Sill-To-Fender Bracket                   
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Fender Support   
1.93 kg each 

Headlamp Extension 
0.80 kg each 

Total carbon fiber content = 6.14 kg per vehicle  



 
Evolution 
 The fender support system increased in functionality as it evolved.  The design flexibility of SMC allowed 
additional attachments at a minimum cost without adding panels and brackets.  The fender supports use molded 
embossments, U-Nuts, Rivet-Nuts, Rivet-Studs and snap-in features to provide attachments for the following 
components: 
 
Fenders Headlamps Brake Ducts Power Distribution Module 
Side Sills  Radiator Belly Pan Engine Controller 
Hood Splash Shields Washer Bottle Clutch Fluid Reservoir 
Fascia Cowl Screens Coolant Bottle Hood Bumpers 
Oil Cooler Fuel Solenoid Security Switch Fog Lamp Access Covers 
Hood Gas Props Cooling Lines Wiring Harnesses   
 
 The fender support system is constructed by first bonding the headlamp support to the fender support with 
structural adhesive.  This sub-assembly is next water jet cut and final assembled with fasteners.  The fender support 
assembly is located to the vehicle by four net-form-and-pierce locations on the frame and two small locating 
fixtures.  The fender supports are bonded to the frame by structural urethane adhesive and mechanically fastened 
with four screws and two nuts.  Finally, each sill-to-fender bracket is fastened to the fender support assembly with 
three rivets. 
 
Figure 8. Fender Support Mounting and Attachments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The original Viper required extensive hand fitting and shimming of front-end components to achieve body build 
objectives.  Fitting is greatly reduced and shimming eliminated in the front end of the new 2003 Viper.  The locating 
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of the fender supports is critical because they provide the dimensional reference for the entire front of the vehicle 
body.  The dimensional stability of the front end is enhanced due to the limited number of molded panels on the 
fender supports. 
 
Performance 
 The bonding of the fender support assemblies creates an upper torsional load transfer path to the frame.  The 
fender supports also provide structural stability to the magnesium front-of-dash near the center of the car.  FEA 
studies show that the fender supports increase the front-of-dash and A-Pillar stiffness by 22%, and increase the first 
bending mode by 3.1 Hz. 
 
 The fender support system, which has an average section thickness of 2 mm, reduces the weight of the vehicle 
by approximately 18 kg.  The system, which is made up of 6.14 kg of carbon fiber SMC, dramatically reduces the 
number of brackets and metal reinforcements on the front end.  An estimated 15-20 metal parts would have been 
required to achieve the same functionality of the six molded carbon fiber panels in the fender support system.   
 
 

Conclusion 
 
The 2003 Viper makes the automotive industries’ first application of carbon fiber SMC to a vehicle's body structure.  
Both thin section structures of all-carbon fiber SMC and the tailored hybridization of carbon fiber SMC to reinforce 
glass fiber SMC moldings are demonstrated. Mass reductions and stiffness improvements are achieved in the fender 
support system, windshield surround structure and door inner panels.  The commercial manufacture of these parts 
represents a milestone for automotive composite technology as the industry begins to explore higher volume 
applications for carbon fiber reinforcements.  The introduction of carbon fiber in a familiar material form and 
process, SMC, provides a relatively easy transition from glass fibers to this high performance fiber.       
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